Publicación:
Characterizations Of Upper And Lower (Α, Β, Θ, Δ, I)-Continuous Multifunctions

dc.contributor.authorCarpintero, Carlos
dc.contributor.authorSanabria, J
dc.contributor.authorRosas, Ennis
dc.contributor.authorVielma, J
dc.contributor.researchgroupCiencias, Entorno y optimización (CEO)
dc.date.accessioned2025-09-08T16:50:50Z
dc.date.issued2021
dc.description.abstractLet (X, τ ) and (Y, σ) be topological spaces in which no separation axioms are assumed, unless explicitly stated and if I is an ideal on X. Given a multifunction F : (X, τ ) → (Y, σ), α, β operators on (X, τ ), θ, δ operators on (Y, σ) and I a proper ideal on X. We introduce and study upper and lower (α, β, θ, δ, I)-continuous multifunctions. A multifunction F : (X, τ ) → (Y, σ) is said to be: 1) upper-(α, β, θ, δ, I)-continuous if α(F +(δ(V ))) \ β(F +(θ(V ))) ∈ I for each open subset V of Y ; 2) lower-(α, β, θ, δ, I)-continuous if α(F −(δ(V ))) \ β(F −(θ(V ))) ∈ I for each open subset V of Y ; 3) (α, β, θ, δ, I)-continuous if it is upper- and lower-(α, β, θ, δ, I)- continuous. In particular, the following statements are proved in the article (Theorem 2): Let α, β be operators on (X, τ ) and θ, θ∗ , δ operators on (Y, σ): 1. The multifunction F : (X, τ ) → (Y, σ) is upper (α, β, θ ∩ θ ∗ , δ, I)-continuous if and only if it is both upper (α, β, θ, δ, I)-continuous and upper (α, β, θ∗ , δ, I)-continuous. 2. The multifunction F : (X, τ ) → (Y, σ) is lower (α, β, θ ∩ θ ∗ , δ, I)-continuous if and only if it is both lower (α, β, θ, δ, I)-continuous and lower (α, β, θ∗ , δ, I)-continuous, provided that β(A ∩ B) = β(A) ∩ β(B) for any subset A, B of X.eng
dc.description.researchareaEstadística Aplicada y Optimización
dc.description.researchareaMatemáticas aplicadas
dc.description.researchareaMateriales y Entorno.
dc.description.researchareaQuímica y Física teórica
dc.format.extent8 paginas
dc.format.mimetypeapplication/pdf
dc.identifier.citationE. Rosas, C. Carpintero, J. Sanabria, J. Vielma, 2021
dc.identifier.eissn1027-4634
dc.identifier.urihttps://repositorio.cecar.edu.co/handle/cecar/10901
dc.language.isoeng
dc.publisher.placeColombia
dc.relation.citationendpage213
dc.relation.citationstartpage206
dc.relation.citationvolume55
dc.relation.ispartofjournalMatematychni Studii
dc.relation.referencesM. Akdag, On upper and lower I-continuos multifunctions, Far East J. Math. Sci., 25 (2007), №1, 49–57.
dc.relation.referencesA. Al-Omari, M.S.M. Noorani, Contra-I-continuous and almost I-continuous functions, Int. J. Math. Math. Sci., 9 (2007), 169–179.
dc.relation.referencesC. Arivazhagi, N. Rajesh, On upper and lower weakly I-continuous multifunctions, Ital. J. Pure Appl. Math., 36 (2016), 899–912.
dc.relation.referencesC. Arivazhagi, N. Rajesh, On upper and lower I-nontinuous multifunctions, Bol. Soc. Paran. Mat., 36 (2018), №2, 99–106.
dc.relation.referencesC. Arivazhagi, N. Rajesh, Nearly I-continuous multifunctions, Bol. Soc. Paran. Mat., 37 (2019), №11, 33–38.
dc.relation.referencesC. Arivazhagi, N. Rajesh, S. Shanthi, On upper and lower almost contra-I-continuous multifunctions, Int. J. Pure Appl. Math., 115 (2017), №4, 787–799.
dc.relation.referencesC. Arivazhagi, N. Rajesh, On upper and lower almost I-continuous multifunctions, submitted.
dc.relation.referencesC. Arivazhagi, N. Rajesh, On slightly I-continuous multifunctions, Journal of New Results in Science, 11 (2016), 17–23.
dc.relation.referencesD. Carnahan, Locally nearly compact spaces, Boll. Un. mat. Ital., 4 (1972), №6, 143–153.
dc.relation.referencesC. Carpintero, J. Pacheco, N. Rajesh, E. Rosas, S. Saranyasri, Properties of nearly ω-continuous multifunctions, Acta Univ. Sapientiae Math., 9 (2017), №1, 13–25.
dc.relation.referencesC. Carpintero, E. Rosas, J. Moreno, More on upper and lower almost nearly I-continuous multifunctions, Int. J. Pure Appl. Math., 117 (2017), №3, 521–537.
dc.relation.referencesC. Carpintero, N. Rajesn, E. Rosas, S. Saranyasri, On upper and lower contra ω-continuous multifunctions, Novi Sad J. Math., 44 (2014), №1, 143–151.
dc.relation.referencesC. Carpintero, N. Rajesn, E. Rosas, S. Saranyasri, On upper and lower faintly ω-continuous multifunctions, Bol. Mat., 21 (2014), №1, 1–8.
dc.relation.referencesE. Ekici, Nearly continuous multifunctions, Acta Math. Univ. Comenianae, 72 (2003), 229–235.
dc.relation.referencesE. Ekici, Almost nearly continuous multifunctions, Acta Math. Univ. Comenianae, 73 (2004), 175–186.
dc.relation.referencesE. Ekici, S. Jafari, V. Popa, On Almost contra-continuous multifunctions, Lobachevskii J. Math., 30 (2009), №2, 124–131.
dc.relation.referencesE. Ekici, S. Jafari, T. Noiri, On upper and lower contra-continuous multifunctions, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), Tomul LIV, 2008, 75–85.
dc.relation.referencesD.S. Jankovic, T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), №4, 295–310.
dc.relation.referencesN. Levine, Semi open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
dc.relation.referencesA. Kambir, I. J. Reilly, On almost l-continuous multifunctions, Hacet. J. Math. Stat., 35 (2005), №2, 181–188.
dc.relation.referencesS. Kasahara, Operation compact spaces, Math. Japonica, 24 (1966), 97–105.
dc.relation.referencesJ. K. Kolii, C.P. Arya, Strongly and perfectly continuous multifunctions, Sci. Stud. Res. Ser. Math. Inform., 20 (2010), №1, 103–118.
dc.relation.referencesJ.K. Kohli, C.P. Arya, Upper and lower (almost) completely continuous multifunctions, preprint.
dc.relation.referencesK. Kuratowski, Topology, Academic Press, New York, 1966.
dc.relation.referencesA.S. Mashhour, M.E. Abd El-Monsef, El-Deep on precontinuous and weak precontinuous mappings, Proced. Phys. Soc. Egypt, 53 (1982), 47–53.
dc.relation.referencesT. Noiri, V. Popa, On upper and lower M-continuos multifunctions, Filomat, 14 (2000), 73–86.
dc.relation.referencesT. Noiri, V. Popa, Slightly m-continuos multifunctions, Bulletin of the Institute of Mathematics Academia Sinica (New Series), 1 (2006), №4, 485–505.
dc.relation.referencesT. Noiri, V. Popa, Almost weakly continuos multifunctions, Demonstrat. Math., 22 (1993), №2, 362–380.
dc.relation.referencesV. Popa, Some properties of H-almost continuous multifunctions, Chaos Solitons Fractals, 12 (2000), 2387–2394.
dc.relation.referencesE. Rosas, C. Carpintero, J. Moreno, Upper and lower (I, J) continuous multifunctions, Int. J. Pure Appl. Math., 117 (2017), №1, 87–97.
dc.relation.referencesE. Rosas, C. Carpintero, J. Sanabria, Weakly (I, J) continuous multifunctions and contra (I, J) continuous multifunctions, Ital. J. Pure Appl. Math., 41 (2019), 547–556.
dc.relation.referencesE. Rosas, C. Carpintero, J. Moreno, Upper and lower (I,J)-continuous multifunctions, Int. J. Pure Appl. Math., 117 (2017), №1.
dc.relation.referencesE. Rosas, C. Carpintero, J. Sanabria, Almost contra (I, J)-continuous multifunctions, Novi Sad J. Math. on line March 28, 2019.
dc.relation.referencesR.E. Simithson, Almost and weak continuity for multifunctions, Bull. Calcutta Math. Soc., 70 (1978), 383–390.
dc.relation.referencesM. Stone, Applications of the theory of boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 374–381.
dc.relation.referencesJ. Vielma, E. Rosas, (α, β, θ, δ, I)-continuous mappings and their decomposition, Divulgaciones Matematicas, 12 (2004), №1, 53–64.
dc.relation.referencesI. Zorlutuna, I-continuous multifunctions, Filomat, 27 (2013), №1, 155–162.
dc.rightsDerechos Reservados. Corporación Universitaria del Caribe – CECARspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.sourceDOI:10.30970/MS.55.2.206-213
dc.subject.proposal(α, β, θ, δ, I)-continuous multifunctionseng
dc.subject.proposalP-continuous multifunctionseng
dc.titleCharacterizations Of Upper And Lower (Α, Β, Θ, Δ, I)-Continuous Multifunctionseng
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
CHARACTERIZATIONS OF UPPER AND LOWER.pdf
Tamaño:
300.56 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: