Publicación: Characterizations Of Upper And Lower (Α, Β, Θ, Δ, I)-Continuous Multifunctions
| dc.contributor.author | Carpintero, Carlos | |
| dc.contributor.author | Sanabria, J | |
| dc.contributor.author | Rosas, Ennis | |
| dc.contributor.author | Vielma, J | |
| dc.contributor.researchgroup | Ciencias, Entorno y optimización (CEO) | |
| dc.date.accessioned | 2025-09-08T16:50:50Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | Let (X, τ ) and (Y, σ) be topological spaces in which no separation axioms are assumed, unless explicitly stated and if I is an ideal on X. Given a multifunction F : (X, τ ) → (Y, σ), α, β operators on (X, τ ), θ, δ operators on (Y, σ) and I a proper ideal on X. We introduce and study upper and lower (α, β, θ, δ, I)-continuous multifunctions. A multifunction F : (X, τ ) → (Y, σ) is said to be: 1) upper-(α, β, θ, δ, I)-continuous if α(F +(δ(V ))) \ β(F +(θ(V ))) ∈ I for each open subset V of Y ; 2) lower-(α, β, θ, δ, I)-continuous if α(F −(δ(V ))) \ β(F −(θ(V ))) ∈ I for each open subset V of Y ; 3) (α, β, θ, δ, I)-continuous if it is upper- and lower-(α, β, θ, δ, I)- continuous. In particular, the following statements are proved in the article (Theorem 2): Let α, β be operators on (X, τ ) and θ, θ∗ , δ operators on (Y, σ): 1. The multifunction F : (X, τ ) → (Y, σ) is upper (α, β, θ ∩ θ ∗ , δ, I)-continuous if and only if it is both upper (α, β, θ, δ, I)-continuous and upper (α, β, θ∗ , δ, I)-continuous. 2. The multifunction F : (X, τ ) → (Y, σ) is lower (α, β, θ ∩ θ ∗ , δ, I)-continuous if and only if it is both lower (α, β, θ, δ, I)-continuous and lower (α, β, θ∗ , δ, I)-continuous, provided that β(A ∩ B) = β(A) ∩ β(B) for any subset A, B of X. | eng |
| dc.description.researcharea | Estadística Aplicada y Optimización | |
| dc.description.researcharea | Matemáticas aplicadas | |
| dc.description.researcharea | Materiales y Entorno. | |
| dc.description.researcharea | Química y Física teórica | |
| dc.format.extent | 8 paginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | E. Rosas, C. Carpintero, J. Sanabria, J. Vielma, 2021 | |
| dc.identifier.eissn | 1027-4634 | |
| dc.identifier.uri | https://repositorio.cecar.edu.co/handle/cecar/10901 | |
| dc.language.iso | eng | |
| dc.publisher.place | Colombia | |
| dc.relation.citationendpage | 213 | |
| dc.relation.citationstartpage | 206 | |
| dc.relation.citationvolume | 55 | |
| dc.relation.ispartofjournal | Matematychni Studii | |
| dc.relation.references | M. Akdag, On upper and lower I-continuos multifunctions, Far East J. Math. Sci., 25 (2007), №1, 49–57. | |
| dc.relation.references | A. Al-Omari, M.S.M. Noorani, Contra-I-continuous and almost I-continuous functions, Int. J. Math. Math. Sci., 9 (2007), 169–179. | |
| dc.relation.references | C. Arivazhagi, N. Rajesh, On upper and lower weakly I-continuous multifunctions, Ital. J. Pure Appl. Math., 36 (2016), 899–912. | |
| dc.relation.references | C. Arivazhagi, N. Rajesh, On upper and lower I-nontinuous multifunctions, Bol. Soc. Paran. Mat., 36 (2018), №2, 99–106. | |
| dc.relation.references | C. Arivazhagi, N. Rajesh, Nearly I-continuous multifunctions, Bol. Soc. Paran. Mat., 37 (2019), №11, 33–38. | |
| dc.relation.references | C. Arivazhagi, N. Rajesh, S. Shanthi, On upper and lower almost contra-I-continuous multifunctions, Int. J. Pure Appl. Math., 115 (2017), №4, 787–799. | |
| dc.relation.references | C. Arivazhagi, N. Rajesh, On upper and lower almost I-continuous multifunctions, submitted. | |
| dc.relation.references | C. Arivazhagi, N. Rajesh, On slightly I-continuous multifunctions, Journal of New Results in Science, 11 (2016), 17–23. | |
| dc.relation.references | D. Carnahan, Locally nearly compact spaces, Boll. Un. mat. Ital., 4 (1972), №6, 143–153. | |
| dc.relation.references | C. Carpintero, J. Pacheco, N. Rajesh, E. Rosas, S. Saranyasri, Properties of nearly ω-continuous multifunctions, Acta Univ. Sapientiae Math., 9 (2017), №1, 13–25. | |
| dc.relation.references | C. Carpintero, E. Rosas, J. Moreno, More on upper and lower almost nearly I-continuous multifunctions, Int. J. Pure Appl. Math., 117 (2017), №3, 521–537. | |
| dc.relation.references | C. Carpintero, N. Rajesn, E. Rosas, S. Saranyasri, On upper and lower contra ω-continuous multifunctions, Novi Sad J. Math., 44 (2014), №1, 143–151. | |
| dc.relation.references | C. Carpintero, N. Rajesn, E. Rosas, S. Saranyasri, On upper and lower faintly ω-continuous multifunctions, Bol. Mat., 21 (2014), №1, 1–8. | |
| dc.relation.references | E. Ekici, Nearly continuous multifunctions, Acta Math. Univ. Comenianae, 72 (2003), 229–235. | |
| dc.relation.references | E. Ekici, Almost nearly continuous multifunctions, Acta Math. Univ. Comenianae, 73 (2004), 175–186. | |
| dc.relation.references | E. Ekici, S. Jafari, V. Popa, On Almost contra-continuous multifunctions, Lobachevskii J. Math., 30 (2009), №2, 124–131. | |
| dc.relation.references | E. Ekici, S. Jafari, T. Noiri, On upper and lower contra-continuous multifunctions, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), Tomul LIV, 2008, 75–85. | |
| dc.relation.references | D.S. Jankovic, T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), №4, 295–310. | |
| dc.relation.references | N. Levine, Semi open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41. | |
| dc.relation.references | A. Kambir, I. J. Reilly, On almost l-continuous multifunctions, Hacet. J. Math. Stat., 35 (2005), №2, 181–188. | |
| dc.relation.references | S. Kasahara, Operation compact spaces, Math. Japonica, 24 (1966), 97–105. | |
| dc.relation.references | J. K. Kolii, C.P. Arya, Strongly and perfectly continuous multifunctions, Sci. Stud. Res. Ser. Math. Inform., 20 (2010), №1, 103–118. | |
| dc.relation.references | J.K. Kohli, C.P. Arya, Upper and lower (almost) completely continuous multifunctions, preprint. | |
| dc.relation.references | K. Kuratowski, Topology, Academic Press, New York, 1966. | |
| dc.relation.references | A.S. Mashhour, M.E. Abd El-Monsef, El-Deep on precontinuous and weak precontinuous mappings, Proced. Phys. Soc. Egypt, 53 (1982), 47–53. | |
| dc.relation.references | T. Noiri, V. Popa, On upper and lower M-continuos multifunctions, Filomat, 14 (2000), 73–86. | |
| dc.relation.references | T. Noiri, V. Popa, Slightly m-continuos multifunctions, Bulletin of the Institute of Mathematics Academia Sinica (New Series), 1 (2006), №4, 485–505. | |
| dc.relation.references | T. Noiri, V. Popa, Almost weakly continuos multifunctions, Demonstrat. Math., 22 (1993), №2, 362–380. | |
| dc.relation.references | V. Popa, Some properties of H-almost continuous multifunctions, Chaos Solitons Fractals, 12 (2000), 2387–2394. | |
| dc.relation.references | E. Rosas, C. Carpintero, J. Moreno, Upper and lower (I, J) continuous multifunctions, Int. J. Pure Appl. Math., 117 (2017), №1, 87–97. | |
| dc.relation.references | E. Rosas, C. Carpintero, J. Sanabria, Weakly (I, J) continuous multifunctions and contra (I, J) continuous multifunctions, Ital. J. Pure Appl. Math., 41 (2019), 547–556. | |
| dc.relation.references | E. Rosas, C. Carpintero, J. Moreno, Upper and lower (I,J)-continuous multifunctions, Int. J. Pure Appl. Math., 117 (2017), №1. | |
| dc.relation.references | E. Rosas, C. Carpintero, J. Sanabria, Almost contra (I, J)-continuous multifunctions, Novi Sad J. Math. on line March 28, 2019. | |
| dc.relation.references | R.E. Simithson, Almost and weak continuity for multifunctions, Bull. Calcutta Math. Soc., 70 (1978), 383–390. | |
| dc.relation.references | M. Stone, Applications of the theory of boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 374–381. | |
| dc.relation.references | J. Vielma, E. Rosas, (α, β, θ, δ, I)-continuous mappings and their decomposition, Divulgaciones Matematicas, 12 (2004), №1, 53–64. | |
| dc.relation.references | I. Zorlutuna, I-continuous multifunctions, Filomat, 27 (2013), №1, 155–162. | |
| dc.rights | Derechos Reservados. Corporación Universitaria del Caribe – CECAR | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.source | DOI:10.30970/MS.55.2.206-213 | |
| dc.subject.proposal | (α, β, θ, δ, I)-continuous multifunctions | eng |
| dc.subject.proposal | P-continuous multifunctions | eng |
| dc.title | Characterizations Of Upper And Lower (Α, Β, Θ, Δ, I)-Continuous Multifunctions | eng |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication |



