Publicación:
Electrochemistry as an Alternative For the Obtaining of Conductive Polymer Nanothreads.

dc.contributor.authorSalgado, Rodrigo
dc.contributor.authorBucheli, W.
dc.contributor.authorArteaga, G.C
dc.contributor.researchgroupCiencias, Entorno y optimización (CEO)
dc.date.accessioned2025-10-02T14:12:00Z
dc.date.issued2017
dc.description.abstractElectrochemical techniques such as cyclic voltammetry and potential step (fixed potential) have allowed obtaining conductive polymers with controlled morphology, which have been evaluated in potential uses for the manufacturing of supercapacitors, organic light-emitting diodes, solar cells, electrochemical sensors, among others, getting good results. It is intended to improve properties of polymer films and miniaturize components of devices where applicable, and to do so, obtaining of materials with nanometric scale is the option. The use of electrochemical technologies has also facilitated the obtaining of porous silicon oxide films (Template) which deposit on an electrode surface, in this case, platinum, which pores have been subject to electrooxidation of 3,4- ethylenedioxythiophene monomer (EDOT), obtaining the polymer Poly(3,4- ethylenedioxythiophene) (PEDOT) with nanometric dimensions, inside the spaces confined by the Template. Electrochemical responses of materials obtained in both surfaces were compared (Unmodified platinum electrodes and those Template-modified) finding an increase in current in those obtained on the Template, which in also, additionally to the calculations, stored higher amount of charge, which is attributed to the formation of nanostructures, verified through TEM images, being specifically PEDOT nanothreads, with diameters varying from 6nm to 14nm, which may improve applications in sensors and supercapacitors due to their characteristics.eng
dc.description.researchareaEstadística Aplicada y Optimización
dc.description.researchareaMatemáticas aplicadas
dc.description.researchareaMateriales y Entorno
dc.description.researchareaQuímica y Física teórica
dc.format.extent6 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.eissn0327-0793
dc.identifier.urihttps://repositorio.cecar.edu.co/handle/cecar/10994
dc.language.isoeng
dc.publisher.placeColombia
dc.relation.citationendpage94
dc.relation.citationstartpage89
dc.relation.citationvolume47
dc.relation.referencesArgun, A., A. Cirpan and J. Reynolds, “The first truly all-polymer electrochromic devices,” Adv Mater., 15, 1338-1341 (2003).
dc.relation.referencesBaik, W., W. Luan, R.H. Zhao, S. Koo and K. Kim, “Synthesis of highly conductive poly(3,4-ethylenedioxythiophene) fiber by simple chemical polymerization,” Synth. Met., 159, 1244-1246 (2009).
dc.relation.referencesBhat, D.K. and M.S. Kumar, “N and p doped poly(3,4- ethylenedioxythiophene) electrode materials for symmetric redox supercapacitors,” J. Mater. Sci., 42, 8158-8162 (2007).
dc.relation.referencesBoal, A.K., F. Ilhan, J.E. Derouchey, T. ThurnAlbrecht, T.P. Russell and V.M. Rotello, “Selfassembly of nanoparticles into structured spherical and network aggregates,” Nature., 404, 746-748 (2000).
dc.relation.referencesCarswell, A.D.W., E.A. O'Rear and B.P. Grady, “Adsorbed Surfactants as Templates for the Synthesis of Morphologically Controlled Polyaniline and Polypyrrole Nanostructures on Flat Surfaces: From Spheres to Wires to Flat Films,” J. Am. Chem. Soc., 125, 14793-14800 (2003).
dc.relation.referencesChakarvarti, S.K., “Track-Etch Membranes as templates enabled nano/micro technology: A review,” Indian Journal of Physics, 83, 737-749 (2009).
dc.relation.referencesCho, S.I. and S.B. Lee, “Fast Electrochemistry of Conductive Polymer Nanotubes: Synthesis, Mechanism, and Application,” Acc. Chem. Res., 41, 699- 707 (2008).
dc.relation.referencesdel Valle, M.A., M.B. Camarada, F. Díaz and G. East, “Correlation between morphology and NGM of 3,4-ethylenedioxythiophene (EDOT) in acetonitrile,” E-Polymers, 8, 839-850 (2008).
dc.relation.referencesdel Valle, M.A., M. Gacitúa, F.R. Díaz, F. Armijo and R.D. Río, “Electrosynthesis of polythiophene nanowires via mesoporous silica thin film templates,” Electrochemistry Communications., 11, 2117-2120 (2009).
dc.relation.referencesdel Valle, M.A., P. Llanquileo, F.R. Díaz, M. Faúndez, L.A. Hernández and B. González, “Design and evaluation of a Hg(II) sensor based on the response of a poly(3,4-ethylenedioxythiophene) modified electrode,” J. Chilean Chem. Soc., 59, 2481-2484 (2014a).
dc.relation.referencesdel Valle, M.A., R. Salgado and F. Armijo, “PEDOT nanowires and platinum nanoparticles modified electrodes to be assayed in formic acid electrooxidation,” Int. J. Electrochem. Sci., 9, 1557-1564 (2014b).
dc.relation.referencesdel Valle, M.A., A.C. Ramos, F.R. Diaz and M.A. Gacitua, “Electrosynthesis and characterisation of polymer nanowires from thiophene and its oligomers,” J. Braz. Chem. Soc., 26, 2313-2320 (2015).
dc.relation.referencesDjuve, J., L.M. Grant, J. Sjöblom, T.P. Goloub and R.J. Pugh, “Templating of ethyl(hydroxyethyl)cellulose on graphite by surfactant-polymer interactions,” Langmuir., 18, 2673-2677 (2002).
dc.relation.referencesDöbbelin, M., R. Tena-Zaera, P.M. Carrasco, J.-R. Sarasua, G. Cabañero and D. Mecerreyes, “Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) nanotube arrays using ZnO templates,” Journal of Polymer Science Part A: Polymer Chemistry., 48, 4648-4653 (2010).
dc.relation.referencesDuvail, J.L., P. Rétho, S. Garreau, G. Louarn, C. Godon and S. Demoustier-Champagne, “Transport and vibrational properties of poly(3,4-ethylenedioxythiophene) nanofibers,” Synth. Met., 131, 123-128 (2002).
dc.relation.referencesEast, G.A. and M.A. del Valle, “Easy-to-Make Ag/AgCl Reference Electrode,” J. Chem. Educ., 77, 97 (2000).
dc.relation.referencesFoss Jr, C.A., G.L. Hornyak, J.A. Stockert and C.R. Martin, “Template-synthesized nanoscopic gold particles: Optical spectra and the effects of particle size and shape,” J. Phys. Chem., 98, 2963-2971 (1994).
dc.relation.referencesGroves, C., O.G. Reid and D.S. Ginger, “Heterogeneity in Polymer Solar Cells: Local Morphology and Performance in Organic Photovoltaics Studied with Scanning Probe Microscopy,” Acc. Chem. Res., 43, 612-620 (2010).
dc.relation.referencesHamedi, M., A. Herland, R.H. Karlsson and O. Lnganäs, “Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT,” Nano Letters., 8, 1736-1740 (2008).
dc.relation.referencesHeinze, J., A. Rasche, M. Pagels and B. Geschke, “On the Origin of the So-Called Nucleation Loop during Electropolymerization of Conducting Polymers,” J Phys Chem B., 111, 989-997 (2007).
dc.relation.referencesHeywang, G. and F. Jonas “Poly(alkylenedioxythiophene)s - New, very Stable Conducting Polymers,” Adv Mater., 4, 116-118 (1992).
dc.relation.referencesJonas, F., W. Krafft, B. Muys, “Poly(3,4-Ethylenedioxythiophene) - Conductive Coatings, Technical Applications and Properties,” Macromol. Symp., 100, 169-173 (1995).
dc.relation.referencesLin, K., C. Yin and S. Chen, “Simultaneous determination of AA, DA, And UA based on bipolymers by electropolymerization of luminol and 3,4- ethylenedioxythiophene monomers”, Int. J. Electrochem. Sci., 6, 3951-3965 (2011).
dc.relation.referencesLiu, R. and S.B. Lee, “MnO2/Poly(3,4-ethylenedioxythiophene) Coaxial Nanowires by One-Step Coelectrodeposition for Electrochemical Energy Storage,” J. Am. Chem. Soc., 130, 2942-2943 (2008).
dc.relation.referencesLong, Y.Z., J.L. Duvail, Z.J. Chen, A.Z. Jin and C.Z. Gu, “Electrical properties of isolated poly(3,4- ethylenedioxythiophene) nanowires prepared by template synthesis,” Polym. Adv. Technol., 20, 541-544 (2009).
dc.relation.referencesLu, H., C. Lin, T. Hsiao, Y. Fang, K. Ho, D. Yang, C.K. Lee, S.M. Hsu and C.W. Lin, “Electrical properties of single and multiple poly(3,4-ethylenedioxythiophene) nanowires for sensing nitric oxide gas,” Anal. Chim. Acta., 640, 68-74 (2009).
dc.relation.referencesMartin, C.R., R. Parthasarathy and V. Menon, “Template synthesis of electronically conductive polymers-preparation of thin films,” Electrochim. Acta., 39, 1309-1313 (1994).
dc.relation.referencesParthasarathy, R.V. and C.R. Martin, “Template synthesized polyaniline microtubules,” Chemistry of Materials., 6, 1627-1632 (1994).
dc.relation.referencesSalgado, R., R. Del Rio, M.A. Del Valle and F. Armijo, “Selective electrochemical determination of dopamine, using a poly(3,4-ethylenedioxythiophene)/polydopamine hybrid film modified electrode,” J. Electroanal. Chem., 704, 130-136 (2013).
dc.relation.referencesSalgado, R., M.A. del Valle, B.G. Duran, M.A. Pardo and F. Armijo, “Optimization of dopamine determination based on nanowires PEDOT/ polydopamine hybrid film modified electrode,” J. Appl. Electrochem., 44. 1289-1294 (2014).
dc.relation.referencesSamitsu, S., T. Shimomura, K. Ito, M. Fujimori, S. Heike and T. Hashizume, “Conductivity measurements of individual poly(3,4-ethylenedioxythiophene)/ poly(styrenesulfonate) nanowires on nanoelectrodes using manipulation with an atomic force microscope,” Appl. Phys. Lett., 86, 1-3 (2005).
dc.relation.referencesSekli-Belaidi, F., P. Temple-Boyer and P. Gros, “Voltammetric microsensor using PEDOT-modified gold electrode for the simultaneous assay of ascorbic and uric acids,” J. Electroanal. Chem., 647, 159-168 (2010).
dc.relation.referencesWalcarius, A., E. Sibottier, M. Etienne and J. Ghanbaja, “Electrochemically assisted self-assembly of mesoporous silica thin films,” Nat. Mater., 6, 602-608 (2007).
dc.relation.referencesWang, Y., K. K. Coti, J. Wang, M. M. Alam, J-J. Shyue, W. Lu, N. P. Padture and H-R. Tseng, “Individually addressable crystalline conducting polymer nanowires in a microelectrode sensor array,” Nanotechnology., 18, 424021 (2007).
dc.relation.referencesYin, Z-H., Y-Z. Long, C-Z. Gu, M-X. Wan and J-L. Duvail, “Current–Voltage Characteristics in Individual Polypyrrole Nanotube, Poly(3,4-ethylenedioxythiophene) Nanowire, Polyaniline Nanotube, and CdS Nanorope,” Nanoscale Res. Lett., 4, 63-69 (2009).
dc.rightsDerechos Reservados. Corporación Universitaria del Caribe – CECARspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.sourcehttps://www.laar.plapiqui.edu.ar/OJS/public/site/volumens/indexes/artic_v4703/Vol47_03_89.pdf
dc.subject.proposalConductive Polymerseng
dc.subject.proposalTemplateeng
dc.subject.proposalElectro-synthesiseng
dc.subject.proposalTEMeng
dc.titleElectrochemistry as an Alternative For the Obtaining of Conductive Polymer Nanothreads.eng
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Vol47_03_89.pdf
Tamaño:
483.52 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: