Publicación:
On Property (Saw) and others spectral properties type Weyl-Browder theorems

dc.contributor.authorCarpintero, Carlos
dc.contributor.authorSanabria, José
dc.contributor.authorRosas, Ennis
dc.contributor.authorGarcia, Orlando
dc.contributor.researchgroupCiencias, Entorno y optimización (CEO)
dc.date.accessioned2025-10-02T13:44:36Z
dc.date.issued2017
dc.description.abstractAn operator T acting on a Banach space X satisfies the property (aw) if σ(T) \ σW (T) = E 0 a(T), where σW (T) is the Weyl spectrum of T and E 0 a(T) is the set of all eigenvalues of T of finite multiplicity that are isolated in the approximate point spectrum of T. In this paper we introduce and study two new spectral properties, namely (Saw) and (Sab), in connection with Weyl-Browder type theorems. Among other results, we prove that T satisfies property (Saw) if and only if T satisfies property (aw) and σSBF − +eng
dc.description.researchareaEstadística Aplicada y Optimización
dc.description.researchareaMatemáticas aplicadas
dc.description.researchareaMateriales y Entorno
dc.description.researchareaQuímica y Física teórica
dc.format.extent19 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.eissn0034-7426
dc.identifier.urihttps://repositorio.cecar.edu.co/handle/cecar/10993
dc.language.isoeng
dc.publisher.placeColombia
dc.relation.citationendpage171
dc.relation.citationissue2
dc.relation.citationstartpage153
dc.relation.citationvolume51
dc.relation.ispartofjournalRevista Colombiana de Matematicas
dc.relation.referencesP. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer, 2004.
dc.relation.referencesQuasi-Fredholm operators and localized SVEP, Acta Sci. Math. (Szeged) 73 (2007), 251–263.
dc.relation.referencesP. Aiena, E. Aponte, and E. Balzan, Weyl type Theorems for left and right polaroid operators, Integr. Equ. Oper. Theory 66 (2010), 1–20.
dc.relation.referencesP. Aiena, M. T. Biondi, and C. Carpintero, On drazin invertibility, Proc. Amer. Math. Soc. 136 (2008), 2839–2848.
dc.relation.referencesP. Aiena, C. Carpintero, and E. Rosas, Some characterization of operators satisfying a-Browder’s theorem, J. Math. Anal. Appl. 311 (2005), 530–544.
dc.relation.referencesP. Aiena and L. Miller, On generalized a-Browder’s theorem, Studia Math. 180 (2007), 285–299.
dc.relation.referencesM. Amouch and M. Berkani, On the property (gw), Mediterr. J. Math. 5 (2008), 371–378.
dc.relation.referencesM. Amouch and H. Zguitti, On the equivalence of Browder’s theorem and generalized Browder’s theorem, Glasgow Math. J. 48 (2006), 179–185.
dc.relation.referencesM. Berkani, Restriction of an operator to the range of its powers, Studia Math. 140 (2000), 163–175.
dc.relation.referencesM. Berkani, M. Kachad, H. Zariouh, and H. Zguitti, Variations on aBrowder-type theorems, Sarajevo J. Math. 9 (2013), 271–281.
dc.relation.referencesM. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359–376.
dc.relation.referencesM. Berkani, M. Sarih, and H. Zariouh, Browder-type theorems and SVEP, Mediterr. J. Math. 8 (2011), 399–409.
dc.relation.referencesM. Berkani and H. Zariouh, Extended Weyl type theorems, Math. Bohemica 134 (2009), 369–378.
dc.relation.referencesNew extended Weyl type theorems, Mat. Vesnik 62 (2010), 145– 154.
dc.relation.referencesL. A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285–288.
dc.relation.referencesJ. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61–69.
dc.relation.referencesA. Gupta and N. Kashayap, Property (Bw) and Weyl type theorems, Bull. Math. Anal. Appl. 3 (2011), 1–7.
dc.relation.referencesVariations on Weyl type theorems, Int. J. Contemp. Math. Sciences 8 (2012), 189–198.
dc.relation.referencesV. Rakoˇcevi´c, On a class of operators, Mat. Vesnik 37 (1985), 423–426.
dc.relation.referencesOperators obeying a-Weyl’s theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915–919.
dc.relation.referencesM. H. M. Rashid, Properties (t) and (gt) for bounded linear operators, Mediterr. J. Math. 11 (2014), 729–744.
dc.relation.referencesM. H. M. Rashid and T. Prasad, Variations of Weyl type theorems, Ann Funct. Anal. Math. 4 (2013), 40–52.
dc.relation.referencesProperty (Sw) for bounded linear operators, Asia-European J. Math. 8 (2015), 14 pages, DOI: 10.1142/S1793557115500126.
dc.relation.referencesJ. Sanabria, C. Carpintero, E. Rosas, and O. Garc´ıa, On generalized property (v) for bounded linear operators, Studia Math. 212 (2012), 141–154.
dc.relation.referencesH. Zariouh, Property (gz) for bounded linear operators, Mat. Vesnik 65 (2013), 94–103.
dc.relation.referencesNew version of property (az), Mat. Vesnik 66 (2014), 317–322.
dc.relation.referencesH. Zariouh and H. Zguitti, Variations on Browder’s theorem, Acta Math. Univ. Comenianae 81 (2012), 255–264.
dc.rightsDerechos Reservados. Corporación Universitaria del Caribe – CECARspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.sourceDOI:10.15446/recolma.v51n2.70899
dc.subject.proposalSemi B-Fredholm operatoreng
dc.subject.proposala-Weyl’s theoremeng
dc.subject.proposalProperty (Saw)eng
dc.subject.proposalProperty (Sab).eng
dc.titleOn Property (Saw) and others spectral properties type Weyl-Browder theoremseng
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
0034-7426-rcm-51-02-00153.pdf
Tamaño:
1.33 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: