Publicación: Human‑to‑dog transmission of SARS‑CoV‑2, Colombia
| dc.contributor.author | Rivero, Ricardo | |
| dc.contributor.author | Garay Montalvo, Evelin | |
| dc.contributor.author | Botero, Yesica | |
| dc.contributor.author | Serrano Coll, Héctor | |
| dc.contributor.author | Gastelbondo Pastrana, Bertha Irina | |
| dc.contributor.author | Muñoz, Marina | |
| dc.contributor.author | Ballesteros, Nathalia | |
| dc.contributor.author | Castañeda, Sergio | |
| dc.contributor.author | Patiño, Luz Helena | |
| dc.contributor.author | Ramírez, Juan David | |
| dc.contributor.author | Calderón Rangel, Alfonso | |
| dc.contributor.author | Guzmán Terán, Camilo Antonio | |
| dc.contributor.author | Martínez Bravo, Caty Milena | |
| dc.contributor.author | Alemán, Ader | |
| dc.contributor.author | Arrieta Bernate, German Javier | |
| dc.contributor.author | Mattar Velilla, Ameth Salim | |
| dc.contributor.corporatename | Corporación Universitaria del caribe - CECAR | |
| dc.contributor.researchgroup | Salud Pública y Auditoría en Salud | |
| dc.date.accessioned | 2025-08-26T20:36:44Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of the current COVID-19 pandemic, has evolved to have a wide range of hosts, including non-human primates, wild and domestic animals. The ACE2 protein has a high level of conservation and is the common receptor invertebrate species for a viral infection to occur; this receptor could give rise to anthroponotic events. This article describes the first event of symptomatic transmission in Latin America from a human to a dog by the B.1.625 lineage of SARS-CoV-2. We found 21 shared mutations in the complete genomes of viral sequences from owners and dogs. Further phylogenetic and molecular analysis showed that 100% co-localization of the clade helps to understand human-animal transmission. Prediction of the Spike protein structure of the sequenced virus and docking analyzes showed that the E484K mutation in the receptor-binding domain (RBD) could contribute to the viral affinity of dACE2. Therefore, close contact between SARS-CoV-2-infected humans and pets should be avoided to prevent the emergence of novel mutations of public health importance from anthroponotic events. | |
| dc.description.researcharea | Auditoría en salud | |
| dc.description.researcharea | Salud Pública | |
| dc.format.extent | 8 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.eissn | 2045-2322 | |
| dc.identifier.uri | https://repositorio.cecar.edu.co/handle/cecar/10741 | |
| dc.language.iso | eng | |
| dc.publisher.place | Colombia | |
| dc.relation.citationendpage | 8 | |
| dc.relation.citationstartpage | 1 | |
| dc.relation.citationvolume | Volumen 12 | |
| dc.relation.ispartofjournal | Scientific Reports | |
| dc.relation.references | Reina, J. E. SARS-CoV-2, una nueva zoonosis pandémica que amenaza al mundo. Vacunas 21, 17–22 (2020). | |
| dc.relation.references | World Health Organization. WHO coronavirus (COVID-19) Dashboard. WHO coronavirus (COVID-19) dashboard with vaccination data. Who 1–5 (2021). | |
| dc.relation.references | Sit, T. H. C. et al. Infection of dogs with SARS-CoV-2. Nature 586, 776–778 (2020). | |
| dc.relation.references | Elbe, S. & Buckland-Merrett, G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob. Challenges 1, 33–46 (2017). | |
| dc.relation.references | Premkumar, L. et al. The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci. Immunol. 5, 1–9 (2020). | |
| dc.relation.references | Gobeil, S.M.-C. et al. Effect of natural mutations of SARS-CoV-2 on spike structure, conformation and antigenicity. bioRxiv Prepr. Serv. Biol. https://doi.org/10.1101/2021.03.11.435037 (2021). | |
| dc.relation.references | Goumenou, M., Spandidos, D. A. & Tsatsakis, A. Possibility of transmission through dogs being a contributing factor to the extreme COVID-19 outbreak in North Italy. Mol. Med. Rep. 21, 2293–2295 (2020). | |
| dc.relation.references | Bosco-Lauth, A. M. et al. Experimental infection of domestic dogs and cats with SARS-CoV-2: Pathogenesis, transmission, and response to reexposure in cats. Proc. Natl. Acad. Sci. USA 117, 26382–26388 (2020). | |
| dc.relation.references | Jangra, S. et al. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe. (2021). | |
| dc.relation.references | Wibmer, C. K. et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. https:// doi.org/10.1038/s41591-021-01285-x (2021). | |
| dc.relation.references | Focosi, D. & Maggi, F. Neutralising antibody escape of SARS-CoV-2 spike protein: Risk assessment for antibody-based COVID-19 therapeutics and vaccines. Rev. Med. Virol. https://doi.org/10.1002/rmv.2231 (2021). | |
| dc.relation.references | West, A. P., Barnes, C. O., Yang, Z. & Bjorkman, P. J. SARS-CoV-2 lineage B.1.526 emerging in the New York region detected by software utility created to query the spike mutational landscape. https://doi.org/10.1101/2021.02.14.431043. | |
| dc.relation.references | Annavajhala, M. K. et al. A novel and expanding SARS-CoV-2 variant, B.1.526, identified in New York. https://doi.org/10.1101/ 2021.02.23.21252259. | |
| dc.relation.references | Federation Drug American (FDA). Fact sheet for health care providers emergency use authorization of bamlanivimab and etesevimab. 1–36 (2020). | |
| dc.relation.references | O’Toole, Á. et al. pangolin: Lineage assignment in an emerging pandemic as an epidemiological tool. in prep. https://doi.org/10. 1093/ve/veab064/6315289. (2021). | |
| dc.relation.references | Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol. 5, 1403–1407 (2020). | |
| dc.relation.references | Stevanovic, V. et al. Seroprevalence of SARS-CoV-2 infection among pet animals in Croatia and potential public health impact. Transbound. Emerg. Dis. 00, 1–7 (2020). | |
| dc.relation.references | Perisé-Barrios, A. J. et al. Humoral responses to SARS-CoV-2 by healthy and sick dogs during the COVID-19 pandemic in Spain. Vet. Res. 52, 1–11 (2021). | |
| dc.relation.references | Jangra, S. et al. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2, e283–e284 (2021). | |
| dc.relation.references | Cele, S. et al. Escape of SARS-CoV-2 501YV2 from neutralization by convalescent plasma. Nature 593, 142–146 (2021). | |
| dc.relation.references | Andreano, E. et al. SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. bioRxiv Prepr. Serv. Biol. https://doi.org/10.1101/2020.12.28.424451 (2020). | |
| dc.relation.references | Fernández, A. Structural impact of mutation D614G in SARS-CoV-2 spike protein: Enhanced infectivity and therapeutic opportunity. ACS Med. Chem. Lett. 11, 1667–1670 (2020). | |
| dc.relation.references | Zhang, L. et al. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat. Commun. 11, 1–9 (2020). | |
| dc.relation.references | Zhang, Z. et al. The molecular basis for SARS-CoV-2 binding to dog ACE2. Nat. Commun. 12, 4195 (2021). | |
| dc.relation.references | Naveca, F. G. et al. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat. Med. 27, 1230–1238 (2021). | |
| dc.relation.references | Faria, N. R. et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science (80-). 372, 815–821 (2021). | |
| dc.relation.references | du Plessis, L. et al. Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK. Science (80-). 371, 708–712 (2021). | |
| dc.relation.references | Early introductions and transmission of SARS-CoV-2 variant B.1.1.7 in the United States Graphical abstract. https://doi.org/10. 1016/j.cell.2021.03.061. | |
| dc.relation.references | Mallapaty, S. COVID mink analysis shows mutations are not dangerous—Yet. Nature 587, 340–341 (2020). | |
| dc.relation.references | Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. | |
| dc.relation.references | World Health Organization. SARS-CoV-2 mink-associated variant strain—Denmark. https://www.who.int/emergencies/disea se-outbreak-news/item/2020-DON301. (Accesed 31 July 2021) | |
| dc.relation.references | Luan, J., Lu, Y., Jin, X. & Zhang, L. Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. (2020). https://doi.org/10.1016/j.bbrc.2020.03.047. | |
| dc.relation.references | Corman, V. et al. Diagnostic detection of 2019-nCoV by real-time RT-PCR. https://virologie-ccm.charite.de/en/ (2020). (Accesed 16 Apr 2021) | |
| dc.relation.references | Miller, J. M. et al. Guidelines for Safe work practices in human and animal medical diagnostic laboratories recommendations of a CDC-convened, Biosafety Blue Ribbon Panel Centers for Disease Control and Prevention MMWR Editorial and Production Staff MMWR Editorial Board. Centers Dis. Control Prev. Morb. Mortal. Wkly. Rep. 61, 105 (2012). | |
| dc.relation.references | World Health Organization. Laboratory Biosafety Manual 3rd edn. (World Health Organization, 2004) | |
| dc.relation.references | du Sert, N. P. et al. The arrive guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020). | |
| dc.relation.references | Katoh, K. & Frith, M. C. Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics 28, 3144–3146 (2012). | |
| dc.relation.references | Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020). | |
| dc.relation.references | Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 14, 587–589 (2017). | |
| dc.relation.references | Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018). | |
| dc.relation.references | Rambaut, A. FigTree. http://tree.bio.ed.ac.uk/software/figtree/. (Accesed 11 July 2021) | |
| dc.relation.references | Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021). | |
| dc.relation.references | Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 1–11. https://doi.org/10.1038/s41586- 021-03819-2 (2021). | |
| dc.relation.references | Mirdita, M., Steinegger, M. & Söding, J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics 35, 2856–2858 (2019). | |
| dc.relation.references | Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020). | |
| dc.relation.references | Du, X. et al. Insights into protein–ligand interactions: Mechanisms, models, and methods. Int. J. Mol. Sci. 17, 1–34 (2016). | |
| dc.relation.references | Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A. PDB2PQR: An automated pipeline for the setup of PoissonBoltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004). | |
| dc.rights | Derechos reservados - Corporación Universitaria de Caribe - CECAR | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.source | https://doi.org/10.1038/s41598-022-11847-9 | |
| dc.subject.proposal | SARS-CoV-2 | |
| dc.subject.proposal | transmission | |
| dc.subject.proposal | Human‑to‑dog | |
| dc.title | Human‑to‑dog transmission of SARS‑CoV‑2, Colombia | eng |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication |



