Publicación: On the hereditary character of certain spectral properties and some applications
| dc.contributor.author | Carpintero, Carlos | |
| dc.contributor.author | Garcia, Orlando | |
| dc.contributor.author | Rosas, Ennis | |
| dc.contributor.author | Sanabria, J | |
| dc.contributor.author | Malaver, A | |
| dc.contributor.researchgroup | Ciencias, Entorno y optimización (CEO) | |
| dc.date.accessioned | 2025-09-08T15:52:23Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | In this paper we study the behavior of certain spectral properties of an operator T on a proper closed and T-invariant subspace W ⊆ X such that T n(X) ⊆ W, for some n ≥ 1, where T ∈ L(X) and X is an infinite-dimensional complex Banach space. We prove that for these subspaces a large number of spectral properties are transmitted from T to its restriction on W and vice-versa. As consequence of our results, we give conditions for which semi-Fredholm spectral properties, as well as Weyl type theorems, are equivalent for two given operators. Additionally, we give conditions under which an operator acting on a subspace can be extended on the entire space preserving the Weyl type theorems. In particular, we give some applications of these results for integral operators acting on certain functions spaces. | eng |
| dc.description.methods | Química y Física teórica | |
| dc.description.researcharea | Estadística Aplicada y Optimización | |
| dc.description.researcharea | Matemáticas aplicadas | |
| dc.description.researcharea | Materiales y Entorno. | |
| dc.format.extent | 17 paginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.eissn | 0716-0917 | |
| dc.identifier.uri | https://repositorio.cecar.edu.co/handle/cecar/10895 | |
| dc.language.iso | eng | |
| dc.publisher.place | Colombia | |
| dc.relation.citationendpage | 1069 | |
| dc.relation.citationissue | 5 | |
| dc.relation.citationstartpage | 1053 | |
| dc.relation.citationvolume | 40 | |
| dc.relation.ispartofjournal | Proyecciones | |
| dc.relation.references | P. Aiena, Fredholm and local spectral theory, with application to multipliers. Dordrecht: Springer, 2004. | |
| dc.relation.references | P. Aiena, “Quasi-Fredholm operators and localized SVEP”, Acta scientiarum mathematicarum, vol. 73, no. 1, pp. 251-263, 2007. | |
| dc.relation.references | P. Aiena, M. T. Biondi, and C. Carpintero, “On Drazin invertibility”, Proceeding of the American Mathematical Society, vol. 136, no. 8, pp. 2839-2848, 2008. | |
| dc.relation.references | F. Astudillo-Villalba and J. Ramos-Fernández, “Multiplication operators on the space of functions of bounded variation”, Demonstratio mathematica, vol. 50, no. 1, pp. 105-115, 2017 | |
| dc.relation.references | B. Barnes, “The spectral and Fredholm theory of extensions of bounded linear operators”, Proceeding of the A | |
| dc.relation.references | B. Barnes, “Restrictions of bounded linear operators: closed range”, Proceeding of the American Mathematical Society, vol. 135, no. 6, pp. 1735-1740, 2007. | |
| dc.relation.references | M. Berkani, “Restriction of an operator to the range of its powers”, Studia mathematica, vol. 140, no. 2, pp. 163-175, 2000. | |
| dc.relation.references | M. Berkani, “On a class of quasi-Fredholm operators”, Integral equations and operator theory, vol. 34, no. 1, pp. 244-249, 1999 | |
| dc.relation.references | M. Berkani and M. Sarih, “On semi B-Fredholm operators”, Glasgow mathematical journal, vol. 43, no. 3, pp. 457-465, 2001. | |
| dc.relation.references | M. Berkani and H. Zariouh, “Extended Weyl type theorems”, Mathematica bohemica, vol. 134, no. 4, pp. 369-378, 2009. | |
| dc.relation.references | M. Berkani and J. Koliha, “Weyl type theorems for bounded linear operators”, Acta scientiarum mathematicarum, vol. 69, no. 1-2, pp. 359-376, 2003. | |
| dc.relation.references | M. Berkani and H. Zariouh, “New extended Weyl type theorems”, Matematički vesnik, vol. 62, no. 2, pp. 145-154, 2010. | |
| dc.relation.references | M. Berkani, M. Sarih, and H. Zariouh, “Browder-type theorems and SVEP”, Mediterranea | |
| dc.relation.references | C. Carpintero, A. Gutiérrez, E. Rosas, y J. Sanabria, “A note on preservation of generalized Fredholm spectra in Berkani’s sense”, Filomat, vol. 32, no. 18, pp. 6431-6440, 2018. | |
| dc.relation.references | L. A. Coburn, “Weyl’s theorem for nonnormal operators”, Michigan mathematical journal, vol. 13, no. 3, pp. 285-288, 1966. | |
| dc.relation.references | L. Chen and W. Su, “A note on Weyl-type theorems and restrictions”, Annals of functional analysis, vol. 8, no. 2, pp. 190-198, 2017. | |
| dc.relation.references | J. K. Finch, “The single valued extension property on a Banach space”, Pacific journal of mathematics, vol. 58, no. 1, pp. 61-69, 1975. | |
| dc.relation.references | A. Gupta and K. Mamtani, “Weyl-type theorems for restrictions of closed linear unbounded operators”, Acta Universitatis Matthiae Belii. Series mathematics, no. 2015, pp. 72-79, 2015. | |
| dc.relation.references | R. E. Harte and W. Y. Lee, “Another note on Weyl’s theorem”, Transactions of the American Mathematical Society, vol. 349, no. 5, pp. 2115-2124, 1997. | |
| dc.relation.references | H. Heuser, Functional analysis. New York, NY: Marcel Dekker, 1982. | |
| dc.relation.references | E. Hewitt and K. A. Ross, Abstract harmonic analysis, vol. 1. Berlin: Springer, 1963. | |
| dc.relation.references | K. Jörgens, Linear integral operator. Boston, MA: Pitman, 1982. | |
| dc.relation.references | V. Rakočević, “Operators obeying a-Weyl’s theorem”, Revue Roumaine de Mathématique Pures et Appliquées, vol. 34, no. 10, pp. 915-919, 1989 | |
| dc.relation.references | V. Rakočević, “On a class of operators”, Matematički vesnik, vol. 37, no. 4, pp. 423-425, 1985. | |
| dc.relation.references | J. Sanabria, C. Carpintero, E. Rosas, and O. García, “On generalized property (v) for bounded linear operators”, Studia mathematica, vol. 212, pp. 141-154, 2012. | |
| dc.relation.references | H. Zariouh, “Property (gz) for bounded linear operators”, Matematički vesnik, vol. 65, no. 1, pp. 94-103, 2013. | |
| dc.relation.references | H. Zariouh, “New version of property (az)”, Matematički vesnik, vol. 66, no. 3, pp. 317-322, 2014. | |
| dc.relation.references | H. Weyl, “Über beschränkte quadratische formen, deren differenz vollstetig ist”, Rendiconti del Circolo Matematico di Palermo, vol. 27, pp. 373-392, 1909. | |
| dc.rights | Derechos Reservados. Corporación Universitaria del Caribe – CECAR | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.source | DOI:10.22199/issn.0717-6279-3678 | |
| dc.subject.proposal | Weyl type theorems | eng |
| dc.subject.proposal | Restrictions of operators | eng |
| dc.subject.proposal | Integral operators | eng |
| dc.subject.proposal | Spectral properties | eng |
| dc.subject.proposal | Semi-Fredholm theory | eng |
| dc.title | On the hereditary character of certain spectral properties and some applications | eng |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication |



