Publicación: Machine Learning Based Toolbox in Foreign Language for Children to Address Climate Change Adaptation
| dc.contributor.author | Nuñez Leguia, Zuleima | |
| dc.contributor.author | Arteaga Requena, Genis | |
| dc.contributor.author | Anaya Herrera, Jhon | |
| dc.contributor.author | Villamizar Parada, Nini Johana | |
| dc.contributor.author | Martinez Bula, Ligia Rosa | |
| dc.contributor.author | Gándara Molina, Mario Alfonso | |
| dc.contributor.researchgroup | Investigadores de educación a distancia (IDEAD) | |
| dc.date.accessioned | 2025-08-21T20:08:25Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | Climate change poses a significant threat to our planet, and educating future generations about itsimplications and solutions is paramount for effective adaptation and mitigation efforts. However, language barriers can hinder the dissemination of crucialinformation, particularly to children who may not yet be proficient in the predominant language of scientific discourse. This paper proposes a novel approach to addressing this challenge by developing a machine learning-based toolbox in a foreign language tailored for children. Leveraging advances in natural language processing and educational technology, the toolbox aims to facilitate interactive learning experiences in foreign languages, fostering a deeper understanding of climate change and promoting actionable strategies for adaptation. Machine learning algorithms like k-nearest neighbor, decision tree, logistic regression, and deep learning techniques such as natural language processing and artificial neural networks are being utilized to tackle climate change challenges across different sectors, including transportation | eng |
| dc.description.abstract | El cambio climático representa una amenaza significativa para nuestro planeta, y educar a las futuras generaciones sobre sus implicaciones y soluciones es primordial para una adaptación y unos esfuerzos de mitigación eficaces. Sin embargo, las barreras lingüísticas pueden dificultar la difusión de información crucial, particularmente a los niños que aún no dominan el idioma predominante del discurso científico. Este artículo propone un enfoque novedoso para abordar este desafío mediante el desarrollo de un conjunto de herramientas basado en el aprendizaje automático en un idioma extranjero, diseñado para niños. Aprovechando los avances en el procesamiento del lenguaje natural y la tecnología educativa, el conjunto de herramientas tiene como objetivo facilitar experiencias de aprendizaje interactivas en idiomas extranjeros, fomentando una comprensión más profunda del cambio climático y promoviendo estrategias prácticas para la adaptación. Se están utilizando algoritmos de aprendizaje automático como el k-vecinos más cercanos, el árbol de decisión, la regresión logística y técnicas de aprendizaje profundo como el procesamiento del lenguaje natural y las redes neuronales artificiales para abordar los desafíos del cambio climático en diferentes sectores, incluido el transporte. | |
| dc.description.researcharea | Currículo, Interculturalidad y educación inicial. | |
| dc.description.researcharea | Educación Superior en el contexto internacional, | |
| dc.description.researcharea | Gerencia, gestión y educación ambiental | |
| dc.description.researcharea | Lingüística, literatura, inglés y desarrollo humano | |
| dc.description.researcharea | Procesos de enseñanza y aprendizaje en EAD y virtual | |
| dc.format.extent | 6 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.eissn | 2147-6799 | |
| dc.identifier.uri | https://repositorio.cecar.edu.co/handle/cecar/10708 | |
| dc.publisher.place | Colombia | |
| dc.relation.citationendpage | 1586 | |
| dc.relation.citationissue | 21 | |
| dc.relation.citationstartpage | 1581 | |
| dc.relation.citationvolume | Volumen 12 | |
| dc.relation.ispartofjournal | International Journal Of Intelligent Systems And Applications In Engineering | |
| dc.relation.references | Sietsma, A., Ford, J., Minx, J. (2023). "The next generation of machine learning for tracking adaptation texts." Nature Climate Change. | |
| dc.relation.references | Gill, D. A., Blythe, J., Bennett, N., Evans, L., Brown, K., Turner, R. A., Baggio, J. A., Baker, D., Ban, N. C., Brun, V., Claudet, J., Darling, E., Di Franco, A., Epstein, G., Estradivari, N. J., Gray, G. G., Gurney, R. P., Horan, S. D., Jupiter, J. D., Muthiga, N. A. (2023). Triple exposure: Reducing negative impacts of climate change, blue growth, and conservation on coastal communities. One Earth, 6, 118–130. | |
| dc.relation.references | Ingole, K., & Padole, D. (2023). Design Approaches for Internet of Things Based System Model for Agricultural Applications. In 11th International Conference on Emerging Trends in Engineering & Technology -Signal and Information Processing (ICETET -SIP) | |
| dc.relation.references | Griffin, C., Wreford, A., & Cradock-Henry, N. A. (2023). ‘As a farmer you’ve just got to learn to cope’: Understanding dairy farmers’ perceptions of climate change and adaptation decisions in the lower South Island of Aotearoa-New Zealand. Journal of Rural Studies, 98, 147–158 | |
| dc.relation.references | Guo, W., Qureshi, N. M. F., Jarwar, M. A., Kim, J., & Shin, D. R. (2023). AI-oriented Smart Power System Transient Stability: The Rationality, Applications, Challenges and Future Opportunities. Sustainable Energy Technologies and Assessments, 56, 102990. | |
| dc.relation.references | Alassery, F., Alzahrani, A., Khan, A. I., Irshad, K., & Islam, S. (2022).An artificial intelligence-based solar radiation prophesy model for green energy utilization in energy management system. Sustainable Energy Technologies and Assessments, 52, 102060 | |
| dc.relation.references | Anthopoulos, L., & Kazantzi, V. (2022). Urban energy efficiency assessment models from an AI and big data perspective: Tools for policy makers. Sustainable Cities and Society, 76, 103492. | |
| dc.relation.references | ClimateChange.AI. (2022). "Using Machine Learning to Track International Climate Finance." Available at: https://www.climatechange.ai/blog/2022-11-09-climate-finance | |
| dc.relation.references | Argyroudis, S. A., Mitoulis, S. A., Chatzi, E., Baker, J. W., Brilakis, I., Gkoumas, K., Vousdoukas, M., Hynes, W., Carluccio, S., Keou, O., Frangopol, D. M., & Linkov, I. (2022). Digital technologies can enhance climate resilience of critical infrastructure. Climate Risk Management, 35, 100387. | |
| dc.relation.references | Aruta, J. J., Benzon, R., & Guinto, R. R. (2022). Safeguarding youth health in climate-vulnerable countries. The Lancet Child & Adolescent Health, 6, 223–224 | |
| dc.relation.references | Azcona, F., Hakna, M. A., Mesa-Jurado, A.-T., Perera, M. Á. D., Mendoza-Carranza, M., Olivera-Villarroel, M., & Gloria de las Mercedes Gómez-Pais. (2022). Coastal communities’ adaptive capacity to climate change: Pantanos de Centla Biosphere Reserve, Mexico.Ocean & Coastal Management,220, 106080 | |
| dc.relation.references | Bartmann, M. (2022). The Ethics of AI-Powered Climate Nudging—How Much AI Should We Use to Save the Planet? Sustainability., 14(9), 5153. | |
| dc.relation.references | Bhagat, S. K., Tiyasha, T., Kumar, A., Malik, T., Jawad, A. H., Khedher, K. M., Deo, R. C.,& Yaseen, Z. M. (2022). Integrative artificial intelligence models for Australian coastal sediment lead prediction: An investigation of in-situ measurements and meteorological parameters effects. Journal of Environmental Management, 309, 114711. | |
| dc.relation.references | Dorward, A., & Giller, K. E. (2022). Change in the climate and other factors affecting agriculture, food or poverty: An opportunity, a threat or both? A personal perspective. Global Food Security, 33, 100623. | |
| dc.relation.references | Filho, L., Walter, T. W., Mucova, S. A. R., Nagy, G. J.,Balogun, A.-L., Luetz, J. M., Ng, A. W., Kovaleva, M., Azam, F. M. S., Alves, F., Guevara, Z., Matandirotya, N. R., Skouloudis, A., Tzachor, A., Malakar, K., & Gandhi, O. (2022). Deploying artificial intelligence for climate change adaptation. Technological Forecasting and Social Change, 180, 121662 | |
| dc.relation.references | Fioravanti, C., Guarino, S., Mazzá, B., Nobili, M., Santucci, F., & Ansaldi, S. M. (2022). A Risk Assessment Framework for Critical Infrastructure Based on the Analytic Hierarchy Process. IFAC-PapersOnLine, 55, 277–282. | |
| dc.rights | Derechos Reservados. Corporación Universitaria del Caribe – CECAR | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.source | https://ijisae.org/index.php/IJISAE/article/view/5631 | |
| dc.subject.proposal | Machine learning | eng |
| dc.subject.proposal | k-nearest neighbou | eng |
| dc.subject.proposal | Decision tree | eng |
| dc.subject.proposal | Climate change | eng |
| dc.subject.proposal | Toolbox | eng |
| dc.title | Machine Learning Based Toolbox in Foreign Language for Children to Address Climate Change Adaptation | eng |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ARTREV | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | f31cb530-6138-4e09-a475-d9641a961652 | |
| relation.isAuthorOfPublication | b33530f6-ca5d-4385-abb6-5a992f315aea | |
| relation.isAuthorOfPublication.latestForDiscovery | f31cb530-6138-4e09-a475-d9641a961652 |



