Publicación:
Machine Learning Based Toolbox in Foreign Language for Children to Address Climate Change Adaptation

dc.contributor.authorNuñez Leguia, Zuleima
dc.contributor.authorArteaga Requena, Genis
dc.contributor.authorAnaya Herrera, Jhon
dc.contributor.authorVillamizar Parada, Nini Johana
dc.contributor.authorMartinez Bula, Ligia Rosa
dc.contributor.authorGándara Molina, Mario Alfonso
dc.contributor.researchgroupInvestigadores de educación a distancia (IDEAD)
dc.date.accessioned2025-08-21T20:08:25Z
dc.date.issued2024
dc.description.abstractClimate change poses a significant threat to our planet, and educating future generations about itsimplications and solutions is paramount for effective adaptation and mitigation efforts. However, language barriers can hinder the dissemination of crucialinformation, particularly to children who may not yet be proficient in the predominant language of scientific discourse. This paper proposes a novel approach to addressing this challenge by developing a machine learning-based toolbox in a foreign language tailored for children. Leveraging advances in natural language processing and educational technology, the toolbox aims to facilitate interactive learning experiences in foreign languages, fostering a deeper understanding of climate change and promoting actionable strategies for adaptation. Machine learning algorithms like k-nearest neighbor, decision tree, logistic regression, and deep learning techniques such as natural language processing and artificial neural networks are being utilized to tackle climate change challenges across different sectors, including transportationeng
dc.description.abstractEl cambio climático representa una amenaza significativa para nuestro planeta, y educar a las futuras generaciones sobre sus implicaciones y soluciones es primordial para una adaptación y unos esfuerzos de mitigación eficaces. Sin embargo, las barreras lingüísticas pueden dificultar la difusión de información crucial, particularmente a los niños que aún no dominan el idioma predominante del discurso científico. Este artículo propone un enfoque novedoso para abordar este desafío mediante el desarrollo de un conjunto de herramientas basado en el aprendizaje automático en un idioma extranjero, diseñado para niños. Aprovechando los avances en el procesamiento del lenguaje natural y la tecnología educativa, el conjunto de herramientas tiene como objetivo facilitar experiencias de aprendizaje interactivas en idiomas extranjeros, fomentando una comprensión más profunda del cambio climático y promoviendo estrategias prácticas para la adaptación. Se están utilizando algoritmos de aprendizaje automático como el k-vecinos más cercanos, el árbol de decisión, la regresión logística y técnicas de aprendizaje profundo como el procesamiento del lenguaje natural y las redes neuronales artificiales para abordar los desafíos del cambio climático en diferentes sectores, incluido el transporte.
dc.description.researchareaCurrículo, Interculturalidad y educación inicial.
dc.description.researchareaEducación Superior en el contexto internacional,
dc.description.researchareaGerencia, gestión y educación ambiental
dc.description.researchareaLingüística, literatura, inglés y desarrollo humano
dc.description.researchareaProcesos de enseñanza y aprendizaje en EAD y virtual
dc.format.extent6 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.eissn2147-6799
dc.identifier.urihttps://repositorio.cecar.edu.co/handle/cecar/10708
dc.publisher.placeColombia
dc.relation.citationendpage1586
dc.relation.citationissue21
dc.relation.citationstartpage1581
dc.relation.citationvolumeVolumen 12
dc.relation.ispartofjournalInternational Journal Of Intelligent Systems And Applications In Engineering
dc.relation.referencesSietsma, A., Ford, J., Minx, J. (2023). "The next generation of machine learning for tracking adaptation texts." Nature Climate Change.
dc.relation.referencesGill, D. A., Blythe, J., Bennett, N., Evans, L., Brown, K., Turner, R. A., Baggio, J. A., Baker, D., Ban, N. C., Brun, V., Claudet, J., Darling, E., Di Franco, A., Epstein, G., Estradivari, N. J., Gray, G. G., Gurney, R. P., Horan, S. D., Jupiter, J. D., Muthiga, N. A. (2023). Triple exposure: Reducing negative impacts of climate change, blue growth, and conservation on coastal communities. One Earth, 6, 118–130.
dc.relation.referencesIngole, K., & Padole, D. (2023). Design Approaches for Internet of Things Based System Model for Agricultural Applications. In 11th International Conference on Emerging Trends in Engineering & Technology -Signal and Information Processing (ICETET -SIP)
dc.relation.referencesGriffin, C., Wreford, A., & Cradock-Henry, N. A. (2023). ‘As a farmer you’ve just got to learn to cope’: Understanding dairy farmers’ perceptions of climate change and adaptation decisions in the lower South Island of Aotearoa-New Zealand. Journal of Rural Studies, 98, 147–158
dc.relation.referencesGuo, W., Qureshi, N. M. F., Jarwar, M. A., Kim, J., & Shin, D. R. (2023). AI-oriented Smart Power System Transient Stability: The Rationality, Applications, Challenges and Future Opportunities. Sustainable Energy Technologies and Assessments, 56, 102990.
dc.relation.referencesAlassery, F., Alzahrani, A., Khan, A. I., Irshad, K., & Islam, S. (2022).An artificial intelligence-based solar radiation prophesy model for green energy utilization in energy management system. Sustainable Energy Technologies and Assessments, 52, 102060
dc.relation.referencesAnthopoulos, L., & Kazantzi, V. (2022). Urban energy efficiency assessment models from an AI and big data perspective: Tools for policy makers. Sustainable Cities and Society, 76, 103492.
dc.relation.referencesClimateChange.AI. (2022). "Using Machine Learning to Track International Climate Finance." Available at: https://www.climatechange.ai/blog/2022-11-09-climate-finance
dc.relation.referencesArgyroudis, S. A., Mitoulis, S. A., Chatzi, E., Baker, J. W., Brilakis, I., Gkoumas, K., Vousdoukas, M., Hynes, W., Carluccio, S., Keou, O., Frangopol, D. M., & Linkov, I. (2022). Digital technologies can enhance climate resilience of critical infrastructure. Climate Risk Management, 35, 100387.
dc.relation.referencesAruta, J. J., Benzon, R., & Guinto, R. R. (2022). Safeguarding youth health in climate-vulnerable countries. The Lancet Child & Adolescent Health, 6, 223–224
dc.relation.referencesAzcona, F., Hakna, M. A., Mesa-Jurado, A.-T., Perera, M. Á. D., Mendoza-Carranza, M., Olivera-Villarroel, M., & Gloria de las Mercedes Gómez-Pais. (2022). Coastal communities’ adaptive capacity to climate change: Pantanos de Centla Biosphere Reserve, Mexico.Ocean & Coastal Management,220, 106080
dc.relation.referencesBartmann, M. (2022). The Ethics of AI-Powered Climate Nudging—How Much AI Should We Use to Save the Planet? Sustainability., 14(9), 5153.
dc.relation.referencesBhagat, S. K., Tiyasha, T., Kumar, A., Malik, T., Jawad, A. H., Khedher, K. M., Deo, R. C.,& Yaseen, Z. M. (2022). Integrative artificial intelligence models for Australian coastal sediment lead prediction: An investigation of in-situ measurements and meteorological parameters effects. Journal of Environmental Management, 309, 114711.
dc.relation.referencesDorward, A., & Giller, K. E. (2022). Change in the climate and other factors affecting agriculture, food or poverty: An opportunity, a threat or both? A personal perspective. Global Food Security, 33, 100623.
dc.relation.referencesFilho, L., Walter, T. W., Mucova, S. A. R., Nagy, G. J.,Balogun, A.-L., Luetz, J. M., Ng, A. W., Kovaleva, M., Azam, F. M. S., Alves, F., Guevara, Z., Matandirotya, N. R., Skouloudis, A., Tzachor, A., Malakar, K., & Gandhi, O. (2022). Deploying artificial intelligence for climate change adaptation. Technological Forecasting and Social Change, 180, 121662
dc.relation.referencesFioravanti, C., Guarino, S., Mazzá, B., Nobili, M., Santucci, F., & Ansaldi, S. M. (2022). A Risk Assessment Framework for Critical Infrastructure Based on the Analytic Hierarchy Process. IFAC-PapersOnLine, 55, 277–282.
dc.rightsDerechos Reservados. Corporación Universitaria del Caribe – CECAR
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.sourcehttps://ijisae.org/index.php/IJISAE/article/view/5631
dc.subject.proposalMachine learningeng
dc.subject.proposalk-nearest neighboueng
dc.subject.proposalDecision treeeng
dc.subject.proposalClimate changeeng
dc.subject.proposalToolboxeng
dc.titleMachine Learning Based Toolbox in Foreign Language for Children to Address Climate Change Adaptationeng
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREV
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationf31cb530-6138-4e09-a475-d9641a961652
relation.isAuthorOfPublicationb33530f6-ca5d-4385-abb6-5a992f315aea
relation.isAuthorOfPublication.latestForDiscoveryf31cb530-6138-4e09-a475-d9641a961652

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
7.+IJISAE+08+do+tool+box+(1)+(1)+(2).pdf
Tamaño:
282.22 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: