Publicación: Hard ticks (Ixodida: Ixodidae) in the Colombian Caribbean harbor the Jingmen tick virus: an emerging arbovirus of public health concern
| dc.contributor.author | López Mejía, Yesica Paola | |
| dc.contributor.author | Thomas Sánchez, Richard Said | |
| dc.contributor.author | López Mejía, Yeimi Fernanda | |
| dc.contributor.author | Galeano Anaya, Ketty Esther | |
| dc.contributor.author | Echeverri de la Hoz, Daniel Mauricio | |
| dc.contributor.author | Martínez Bravo, Caty Milena | |
| dc.contributor.author | Gastelbondo Pastrana, Bertha Irina | |
| dc.contributor.author | Contreras Martínez, Héctor Iván | |
| dc.contributor.author | Paternina Tuiran, Luis Enrique | |
| dc.contributor.author | Hoyos López, Richard Onalbi | |
| dc.contributor.author | Garay Montalvo, Evelin | |
| dc.contributor.author | Alemán Santos, Maira Alejandra | |
| dc.contributor.author | Miranda Regino, Jorge Luis | |
| dc.contributor.author | Contreras Cogollo, Veronica | |
| dc.contributor.author | Fragoso Castilla, Pedro José | |
| dc.contributor.author | Arrieta Bernate, German Javier | |
| dc.contributor.author | Mattar Velilla, Salim | |
| dc.contributor.corporatename | Corporación Universitaria del caribe - CECAR | |
| dc.contributor.researchgroup | Salud Publica y Auditoria en Salud | |
| dc.date.accessioned | 2025-08-21T21:38:16Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | Background Ticks are obligate hematophagous ectoparasites involved in transmitting viruses of public health importance. The objective of this work was to identify the Jingmen tick virus in hard ticks from the Colombian Carib‑ bean, an arbovirus of importance for public health. Methods Ticks were collected in rural areas of Córdoba and Cesar, Colombia. Taxonomic identification of ticks was carried out, and pools of 13 individuals were formed. RNA extraction was performed. Library preparation was per‑ formed with the MGIEasy kit, and next-generation sequencing (NGS) with MGI equipment. Bioinformatic analyses and taxonomic assignments were performed using the Galaxy platform, and phylogenetic analyses were done using IQ-TREE2. Results A total of 766 ticks were collected, of which 87.33% (669/766) were Rhipicephalus microplus, 5.4% (42/766) Dermacentor nitens, 4.2% (32/766) Rhipicephalus linnaei, and 3.0% (23/766) Amblyomma dissimile. Complete and partial segments 1, 2, 3, and 4 of Jingmen tick virus (JMTV) were detected in the metatranscriptome of the spe‑ cies R. microplus, D. nitens, and A. dissimile. The JMTVs detected are phylogenetically related to JMTVs detected in Aedes albopictus in France, JMTVs detected in R. microplus in Trinidad and Tobago, JMTVs in R. microplus and A. variegatum in the French Antilles, and JMTVs detected in R. microplus in Colombia. Interestingly, our sequences clustered closely with JMTV detected in humans from Kosovo. Conclusions JMTV was detected in R. microplus, D. nitens, and A. dissimile. JMTV could pose a risk to humans. There‑ fore, it is vital to establish epidemiological surveillance measures to better understand the possible role of JMTV in tropical diseases. | |
| dc.description.researcharea | Auditoría en salud | |
| dc.description.researcharea | Salud Pública | |
| dc.format.extent | 7 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.issn | 1756-3305 | |
| dc.identifier.uri | https://repositorio.cecar.edu.co/handle/cecar/10712 | |
| dc.publisher.place | Colombia | |
| dc.relation.citationendpage | 7 | |
| dc.relation.citationstartpage | 1 | |
| dc.relation.citationvolume | Volumen 17 | |
| dc.relation.ispartofjournal | Parasites & Vectors | |
| dc.relation.references | Rochlin I, Toledo A. Emerging tick-borne pathogens of public health importance: a mini-review. J Med Microbiol. 2020;69:781–91. https://doi. org/10.1099/jmm.0.001206. | |
| dc.relation.references | Mansfield KL, Jizhou L, Phipps LP, Johnson N. Emerging tick-borne viruses in the twenty-first century. Front Cell Infect Microbiol. 2017;7:298. https:// doi.org/10.3389/fcimb.2017.00298 | |
| dc.relation.references | emerging tick-borne viruses in Eastern Europe and the Black Sea Region. Sci Rep. 2023;13:19824. https://doi.org/10.1038/s41598-023-46879-2. | |
| dc.relation.references | Jia N, Liu HB, Ni XB, et al. Emergence of human infection with Jingmen tick virus in China: a retrospective study. EBioMedicine. 2019;43:317–24. https://doi.org/10.1016/j.ebiom.2019.04.004. | |
| dc.relation.references | Qin XC, Shi M, Tian JH, et al. A tick-borne segmented RNA virus contains genome segments derived from unsegmented viral ancestors. Proc Natl Acad Sci U S A. 2014;111:6744–9. https://doi.org/10.1073/pnas.13241 94111. | |
| dc.relation.references | Simmonds P, Becher P, Bukh J, et al. ICTV virus taxonomy profile: flaviviri‑ dae. J Gen Virol. 2017;98:2–3. https://doi.org/10.1099/jgv.0.000672. | |
| dc.relation.references | Wu Z, Zhang M, Zhang Y, et al. Jingmen tick virus: an emerging arbovirus with a global threat. mSphere. 2023;8:e0028123. https://doi.org/10.1128/ msphere.00281-23 | |
| dc.relation.references | Li W, Li R, Tang X, et al. Genomics evolution of Jingmen viruses associated with ticks and vertebrates. Genomics. 2023;115:110734. https://doi.org/ 10.1016/j.ygeno.2023.110734 | |
| dc.relation.references | Temmam S, Bigot T, Chrétien D, et al. Insights into the host range, genetic diversity, and geographical distribution of jingmenviruses. mSphere. 2019;4:e00645-e719. https://doi.org/10.1128/mSphere.00645-19 | |
| dc.relation.references | Souza WM, Fumagalli MJ, Torres Carrasco AO, et al. Viral diversity of Rhipicephalus microplus parasitizing cattle in southern Brazil. Sci Rep. 2018;8:16315. https://doi.org/10.1038/s41598-018-34630-1 | |
| dc.relation.references | Ergunay K, Mutinda M, Bourke B, et al. Metagenomic investigation of ticks from Kenyan wildlife reveals diverse microbial pathogens and new country pathogen records. Front Microbiol. 2022;13:932224. https://doi. org/10.3389/fmicb.2022.932224 | |
| dc.relation.references | Dinçer E, Hacıoğlu S, Kar S, et al. Survey and characterization of Jingmen Tick Virus variants. Viruses. 2019;11:1071. https://doi.org/10.3390/v1111 1071. | |
| dc.relation.references | Sameroff S, Tokarz R, Charles RA, et al. Viral diversity of tick species para‑ sitizing cattle and dogs in Trinidad and Tobago. Sci Rep. 2019;9:10421. https://doi.org/10.1038/s41598-019-46914-1. | |
| dc.relation.references | Kobayashi D, Kuwata R, Kimura T, et al. Detection of Jingmenviruses in Japan with evidence of vertical transmission in ticks. Viruses. 2021;13:2547. https://doi.org/10.3390/v13122547 | |
| dc.relation.references | . Bratuleanu BE, Temmam S, Chrétien D, et al. The virome of Rhipicephalus, Dermacentor and Haemaphysalis ticks from Eastern Romania includes novel viruses with potential relevance for public health. Transbound Emerg Dis. 2022;69:1387–403. https://doi.org/10.1111/tbed.14105. | |
| dc.relation.references | Gómez GF, Isaza JP, Segura JA, Alzate JF, Gutiérrez LA. Metatranscriptomic virome assessment of Rhipicephalus microplus from Colombia. Ticks Tick Borne Dis. 2020;11:101426. https://doi.org/10.1016/j.ttbdis.2020.101426 | |
| dc.relation.references | Orozco Orozco M, Gómez GF, Alzate JF, Isaza JP, Gutiérrez LA. Virome analysis of three Ixodidae ticks species from Colombia: a potential strat‑ egy for discovering and surveying tick-borne viruses. Infect Genet Evol. 2021;96:105103. https://doi.org/10.1016/j.meegid.2021.105103. | |
| dc.relation.references | Parry R, James ME, Asgari S. Uncovering the worldwide diversity and evolution of the virome of the mosquitoes Aedes aegypti and Aedes albopictus. Microorganisms. 2021;9:1653. https://doi.org/10.3390/microorgan isms9081653 | |
| dc.relation.references | . Ladner JT, Wiley MR, Beitzel B, et al. A multicomponent animal virus isolated from mosquitoes. Cell Host Microbe. 2016;20:357–67. https://doi. org/10.1016/j.chom.2016.07.011 | |
| dc.relation.references | Yu ZM, Chen JT, Qin J, et al. Identification and characterization of Jingmen tick virus in rodents from Xinjiang, China. Infect Genet Evol. 2020;84:104411. https://doi.org/10.1016/j.meegid.2020.104411. | |
| dc.relation.references | Emmerich P, Jakupi X, von Possel R, et al. Viral metagenomics, genetic and evolutionary characteristics of Crimean-Congo hemorrhagic fever Orthonairovirus in humans, Kosovo. Infect Genet Evol. 2018;65:6–11. https://doi. org/10.1016/j.meegid.2018.07.010 | |
| dc.relation.references | Wang ZD, Wang B, Wei F, et al. A new segmented virus associated with human febrile illness in China. N Engl J Med. 2019;380:2116–25. https:// doi.org/10.1056/NEJMoa1805068. | |
| dc.relation.references | . Dantas-Torres F, Fernandes Martins T, Muñoz-Leal S, Onofrio VC, BarrosBattesti DM. Ticks (Ixodida: Argasidae, Ixodidae) of Brazil: updated species checklist and taxonomic keys. Ticks Tick Borne Dis. 2019;10:101252. https://doi.org/10.1016/j.ttbdis.2019.06.012. | |
| dc.relation.references | Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ pre‑ processor. Bioinformatics. 2018;34:i884–90. https://doi.org/10.1093/bioin formatics/bty560. | |
| dc.relation.references | . Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923. | |
| dc.relation.references | Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast singlenode solution for large and complex metagenomics assembly via suc‑ cinct de Bruijn graph. Bioinformatics. 2015;31:1674–6. https://doi.org/10. 1093/bioinformatics/btv033 | |
| dc.relation.references | Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. https://doi.org/10.1016/S0022- 2836(05)80360-2. | |
| dc.relation.references | Broom BM, Ryan MC, Brown RE, et al. A galaxy implementation of nextgeneration clustered heatmaps for interactive exploration of molecular profiling data. Cancer Res. 2017;77:e23–6. https://doi.org/10.1158/0008- 5472.CAN-17-0318 . | |
| dc.relation.references | Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66. https://doi.org/10.1093/nar/gkf436 . | |
| dc.relation.references | Benson DA, Karsch -Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank: update. Nucleic Acids Res. 2004;32:D23–6. https://doi.org/10.1093/nar/ gkh045 | |
| dc.relation.references | Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ -TREE: a fast and effective stochastic algorithm for estimating maximum -likelihood phy ‑ logenies. Mol Biol Evol. 2015;32:268–74. https://doi.org/10.1093/molbev/ msu300. | |
| dc.relation.references | Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76. https://doi.org/10.1007/ BF01734359. | |
| dc.relation.references | . Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9. https://doi.org/10.1038/nmeth.4285. | |
| dc.relation.references | Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum -likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. https://doi.org/10.1093/sysbio/syq010. | |
| dc.relation.references | Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylo ‑ genetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6. https://doi.org/10.1093/nar/gkab301. | |
| dc.relation.references | Yuan S, Chan HCS, Filipek S, Vogel H. PyMOL and inkscape bridge the data and the data visualization. Structure. 2016;24:2041–2. https://doi.org/10. 1016/j.str.2016.11.012. | |
| dc.relation.references | . Shi M, Lin XD, Vasilakis N, et al. Divergent viruses discovered in arthropods and vertebrates revise the evolutionary history of the flaviviridae and related viruses. J Virol. 2015;90:659–69. https://doi.org/10.1128/JVI. 02036-15. | |
| dc.rights | Derechos reservados - Corporación Universitaria de Caribe - CECAR | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.subject.proposal | Jingmen tick virus | |
| dc.subject.proposal | Virus | |
| dc.subject.proposal | Tick-borne disease | |
| dc.subject.proposal | Next-generation sequencing | |
| dc.subject.proposal | Rhipicephalus microplus | |
| dc.subject.proposal | Dermacentor nitens | |
| dc.subject.proposal | Amblyomma dissimile | |
| dc.title | Hard ticks (Ixodida: Ixodidae) in the Colombian Caribbean harbor the Jingmen tick virus: an emerging arbovirus of public health concern | eng |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication |



