Publicación:
Hard ticks (Ixodida: Ixodidae) in the Colombian Caribbean harbor the Jingmen tick virus: an emerging arbovirus of public health concern

dc.contributor.authorLópez Mejía, Yesica Paola
dc.contributor.authorThomas Sánchez, Richard Said
dc.contributor.authorLópez Mejía, Yeimi Fernanda
dc.contributor.authorGaleano Anaya, Ketty Esther
dc.contributor.authorEcheverri de la Hoz, Daniel Mauricio
dc.contributor.authorMartínez Bravo, Caty Milena
dc.contributor.authorGastelbondo Pastrana, Bertha Irina
dc.contributor.authorContreras Martínez, Héctor Iván
dc.contributor.authorPaternina Tuiran, Luis Enrique
dc.contributor.authorHoyos López, Richard Onalbi
dc.contributor.authorGaray Montalvo, Evelin
dc.contributor.authorAlemán Santos, Maira Alejandra
dc.contributor.authorMiranda Regino, Jorge Luis
dc.contributor.authorContreras Cogollo, Veronica
dc.contributor.authorFragoso Castilla, Pedro José
dc.contributor.authorArrieta Bernate, German Javier
dc.contributor.authorMattar Velilla, Salim
dc.contributor.corporatenameCorporación Universitaria del caribe - CECAR
dc.contributor.researchgroupSalud Publica y Auditoria en Salud
dc.date.accessioned2025-08-21T21:38:16Z
dc.date.issued2024
dc.description.abstractBackground Ticks are obligate hematophagous ectoparasites involved in transmitting viruses of public health importance. The objective of this work was to identify the Jingmen tick virus in hard ticks from the Colombian Carib‑ bean, an arbovirus of importance for public health. Methods Ticks were collected in rural areas of Córdoba and Cesar, Colombia. Taxonomic identification of ticks was carried out, and pools of 13 individuals were formed. RNA extraction was performed. Library preparation was per‑ formed with the MGIEasy kit, and next-generation sequencing (NGS) with MGI equipment. Bioinformatic analyses and taxonomic assignments were performed using the Galaxy platform, and phylogenetic analyses were done using IQ-TREE2. Results A total of 766 ticks were collected, of which 87.33% (669/766) were Rhipicephalus microplus, 5.4% (42/766) Dermacentor nitens, 4.2% (32/766) Rhipicephalus linnaei, and 3.0% (23/766) Amblyomma dissimile. Complete and partial segments 1, 2, 3, and 4 of Jingmen tick virus (JMTV) were detected in the metatranscriptome of the spe‑ cies R. microplus, D. nitens, and A. dissimile. The JMTVs detected are phylogenetically related to JMTVs detected in Aedes albopictus in France, JMTVs detected in R. microplus in Trinidad and Tobago, JMTVs in R. microplus and A. variegatum in the French Antilles, and JMTVs detected in R. microplus in Colombia. Interestingly, our sequences clustered closely with JMTV detected in humans from Kosovo. Conclusions JMTV was detected in R. microplus, D. nitens, and A. dissimile. JMTV could pose a risk to humans. There‑ fore, it is vital to establish epidemiological surveillance measures to better understand the possible role of JMTV in tropical diseases.
dc.description.researchareaAuditoría en salud
dc.description.researchareaSalud Pública
dc.format.extent7 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.issn1756-3305
dc.identifier.urihttps://repositorio.cecar.edu.co/handle/cecar/10712
dc.publisher.placeColombia
dc.relation.citationendpage7
dc.relation.citationstartpage1
dc.relation.citationvolumeVolumen 17
dc.relation.ispartofjournalParasites & Vectors
dc.relation.referencesRochlin I, Toledo A. Emerging tick-borne pathogens of public health importance: a mini-review. J Med Microbiol. 2020;69:781–91. https://doi. org/10.1099/jmm.0.001206.
dc.relation.referencesMansfield KL, Jizhou L, Phipps LP, Johnson N. Emerging tick-borne viruses in the twenty-first century. Front Cell Infect Microbiol. 2017;7:298. https:// doi.org/10.3389/fcimb.2017.00298
dc.relation.referencesemerging tick-borne viruses in Eastern Europe and the Black Sea Region. Sci Rep. 2023;13:19824. https://doi.org/10.1038/s41598-023-46879-2.
dc.relation.referencesJia N, Liu HB, Ni XB, et al. Emergence of human infection with Jingmen tick virus in China: a retrospective study. EBioMedicine. 2019;43:317–24. https://doi.org/10.1016/j.ebiom.2019.04.004.
dc.relation.referencesQin XC, Shi M, Tian JH, et al. A tick-borne segmented RNA virus contains genome segments derived from unsegmented viral ancestors. Proc Natl Acad Sci U S A. 2014;111:6744–9. https://doi.org/10.1073/pnas.13241 94111.
dc.relation.referencesSimmonds P, Becher P, Bukh J, et al. ICTV virus taxonomy profile: flaviviri‑ dae. J Gen Virol. 2017;98:2–3. https://doi.org/10.1099/jgv.0.000672.
dc.relation.referencesWu Z, Zhang M, Zhang Y, et al. Jingmen tick virus: an emerging arbovirus with a global threat. mSphere. 2023;8:e0028123. https://doi.org/10.1128/ msphere.00281-23
dc.relation.referencesLi W, Li R, Tang X, et al. Genomics evolution of Jingmen viruses associated with ticks and vertebrates. Genomics. 2023;115:110734. https://doi.org/ 10.1016/j.ygeno.2023.110734
dc.relation.referencesTemmam S, Bigot T, Chrétien D, et al. Insights into the host range, genetic diversity, and geographical distribution of jingmenviruses. mSphere. 2019;4:e00645-e719. https://doi.org/10.1128/mSphere.00645-19
dc.relation.referencesSouza WM, Fumagalli MJ, Torres Carrasco AO, et al. Viral diversity of Rhipicephalus microplus parasitizing cattle in southern Brazil. Sci Rep. 2018;8:16315. https://doi.org/10.1038/s41598-018-34630-1
dc.relation.referencesErgunay K, Mutinda M, Bourke B, et al. Metagenomic investigation of ticks from Kenyan wildlife reveals diverse microbial pathogens and new country pathogen records. Front Microbiol. 2022;13:932224. https://doi. org/10.3389/fmicb.2022.932224
dc.relation.referencesDinçer E, Hacıoğlu S, Kar S, et al. Survey and characterization of Jingmen Tick Virus variants. Viruses. 2019;11:1071. https://doi.org/10.3390/v1111 1071.
dc.relation.referencesSameroff S, Tokarz R, Charles RA, et al. Viral diversity of tick species para‑ sitizing cattle and dogs in Trinidad and Tobago. Sci Rep. 2019;9:10421. https://doi.org/10.1038/s41598-019-46914-1.
dc.relation.referencesKobayashi D, Kuwata R, Kimura T, et al. Detection of Jingmenviruses in Japan with evidence of vertical transmission in ticks. Viruses. 2021;13:2547. https://doi.org/10.3390/v13122547
dc.relation.references. Bratuleanu BE, Temmam S, Chrétien D, et al. The virome of Rhipicephalus, Dermacentor and Haemaphysalis ticks from Eastern Romania includes novel viruses with potential relevance for public health. Transbound Emerg Dis. 2022;69:1387–403. https://doi.org/10.1111/tbed.14105.
dc.relation.referencesGómez GF, Isaza JP, Segura JA, Alzate JF, Gutiérrez LA. Metatranscriptomic virome assessment of Rhipicephalus microplus from Colombia. Ticks Tick Borne Dis. 2020;11:101426. https://doi.org/10.1016/j.ttbdis.2020.101426
dc.relation.referencesOrozco Orozco M, Gómez GF, Alzate JF, Isaza JP, Gutiérrez LA. Virome analysis of three Ixodidae ticks species from Colombia: a potential strat‑ egy for discovering and surveying tick-borne viruses. Infect Genet Evol. 2021;96:105103. https://doi.org/10.1016/j.meegid.2021.105103.
dc.relation.referencesParry R, James ME, Asgari S. Uncovering the worldwide diversity and evolution of the virome of the mosquitoes Aedes aegypti and Aedes albopictus. Microorganisms. 2021;9:1653. https://doi.org/10.3390/microorgan isms9081653
dc.relation.references. Ladner JT, Wiley MR, Beitzel B, et al. A multicomponent animal virus isolated from mosquitoes. Cell Host Microbe. 2016;20:357–67. https://doi. org/10.1016/j.chom.2016.07.011
dc.relation.referencesYu ZM, Chen JT, Qin J, et al. Identification and characterization of Jingmen tick virus in rodents from Xinjiang, China. Infect Genet Evol. 2020;84:104411. https://doi.org/10.1016/j.meegid.2020.104411.
dc.relation.referencesEmmerich P, Jakupi X, von Possel R, et al. Viral metagenomics, genetic and evolutionary characteristics of Crimean-Congo hemorrhagic fever Orthonairovirus in humans, Kosovo. Infect Genet Evol. 2018;65:6–11. https://doi. org/10.1016/j.meegid.2018.07.010
dc.relation.referencesWang ZD, Wang B, Wei F, et al. A new segmented virus associated with human febrile illness in China. N Engl J Med. 2019;380:2116–25. https:// doi.org/10.1056/NEJMoa1805068.
dc.relation.references. Dantas-Torres F, Fernandes Martins T, Muñoz-Leal S, Onofrio VC, BarrosBattesti DM. Ticks (Ixodida: Argasidae, Ixodidae) of Brazil: updated species checklist and taxonomic keys. Ticks Tick Borne Dis. 2019;10:101252. https://doi.org/10.1016/j.ttbdis.2019.06.012.
dc.relation.referencesChen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ pre‑ processor. Bioinformatics. 2018;34:i884–90. https://doi.org/10.1093/bioin formatics/bty560.
dc.relation.references. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923.
dc.relation.referencesLi D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast singlenode solution for large and complex metagenomics assembly via suc‑ cinct de Bruijn graph. Bioinformatics. 2015;31:1674–6. https://doi.org/10. 1093/bioinformatics/btv033
dc.relation.referencesAltschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. https://doi.org/10.1016/S0022- 2836(05)80360-2.
dc.relation.referencesBroom BM, Ryan MC, Brown RE, et al. A galaxy implementation of nextgeneration clustered heatmaps for interactive exploration of molecular profiling data. Cancer Res. 2017;77:e23–6. https://doi.org/10.1158/0008- 5472.CAN-17-0318 .
dc.relation.referencesKatoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66. https://doi.org/10.1093/nar/gkf436 .
dc.relation.referencesBenson DA, Karsch -Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank: update. Nucleic Acids Res. 2004;32:D23–6. https://doi.org/10.1093/nar/ gkh045
dc.relation.referencesNguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ -TREE: a fast and effective stochastic algorithm for estimating maximum -likelihood phy ‑ logenies. Mol Biol Evol. 2015;32:268–74. https://doi.org/10.1093/molbev/ msu300.
dc.relation.referencesFelsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76. https://doi.org/10.1007/ BF01734359.
dc.relation.references. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9. https://doi.org/10.1038/nmeth.4285.
dc.relation.referencesGuindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum -likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. https://doi.org/10.1093/sysbio/syq010.
dc.relation.referencesLetunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylo ‑ genetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6. https://doi.org/10.1093/nar/gkab301.
dc.relation.referencesYuan S, Chan HCS, Filipek S, Vogel H. PyMOL and inkscape bridge the data and the data visualization. Structure. 2016;24:2041–2. https://doi.org/10. 1016/j.str.2016.11.012.
dc.relation.references. Shi M, Lin XD, Vasilakis N, et al. Divergent viruses discovered in arthropods and vertebrates revise the evolutionary history of the flaviviridae and related viruses. J Virol. 2015;90:659–69. https://doi.org/10.1128/JVI. 02036-15.
dc.rightsDerechos reservados - Corporación Universitaria de Caribe - CECAR
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subject.proposalJingmen tick virus
dc.subject.proposalVirus
dc.subject.proposalTick-borne disease
dc.subject.proposalNext-generation sequencing
dc.subject.proposalRhipicephalus microplus
dc.subject.proposalDermacentor nitens
dc.subject.proposalAmblyomma dissimile
dc.titleHard ticks (Ixodida: Ixodidae) in the Colombian Caribbean harbor the Jingmen tick virus: an emerging arbovirus of public health concerneng
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
13071_2024_Article_6362.pdf
Tamaño:
2.47 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: