Publicación: On the hereditary character of new strong variations of Weyl type Theorems
Portada
Citas bibliográficas
Código QR
Autor corporativo
Recolector de datos
Otros/Desconocido
Director audiovisual
Editor
Tipo de Material
Fecha
Citación
Título de serie/ reporte/ volumen/ colección
Es Parte de
Resumen en inglés
Berkani and Kachad [18], [19], and Sanabria et al. [32], introduced and studied strong variations of Weyl type Theorems. In this paper, we study the behavior of these strong variations of Weyl type theorems for an operator T on a proper closed and Tinvariant subspace W ⊆ X such that T n (X) ⊆ W for some n ≥ 1, where T ∈ L(X) and X is an infinite-dimensional complex Banach space. The main purpose of this paper is to prove that for these subspaces (which generalize the case T n (X) closed for some n ≥ 0), these strong variations of Weyl type theorems are preserved from T to its restriction on W and vice-versa. As consequence of our results, we give sufficient conditions for which these strong variations of Weyl type Theorems are equivalent for two given operators. Also, some applications to multiplication operators acting on the boundary variation space BV [0, 1] are given.




PDF
FLIP 
