Publicación: On the hereditary character of new strong variations of Weyl type Theorems
| dc.contributor.author | Carpintero, Carlos | |
| dc.contributor.author | Malaver, A | |
| dc.contributor.author | Rosas, E | |
| dc.contributor.author | Sanabria, J | |
| dc.contributor.researchgroup | Ciencias, Entorno y optimización (CEO) | |
| dc.date.accessioned | 2025-09-11T20:09:05Z | |
| dc.date.issued | 2019 | |
| dc.description.abstract | Berkani and Kachad [18], [19], and Sanabria et al. [32], introduced and studied strong variations of Weyl type Theorems. In this paper, we study the behavior of these strong variations of Weyl type theorems for an operator T on a proper closed and Tinvariant subspace W ⊆ X such that T n (X) ⊆ W for some n ≥ 1, where T ∈ L(X) and X is an infinite-dimensional complex Banach space. The main purpose of this paper is to prove that for these subspaces (which generalize the case T n (X) closed for some n ≥ 0), these strong variations of Weyl type theorems are preserved from T to its restriction on W and vice-versa. As consequence of our results, we give sufficient conditions for which these strong variations of Weyl type Theorems are equivalent for two given operators. Also, some applications to multiplication operators acting on the boundary variation space BV [0, 1] are given. | eng |
| dc.description.researcharea | Estadística Aplicada y Optimización | |
| dc.description.researcharea | Matemáticas aplicadas | |
| dc.description.researcharea | Materiales y Entorno | |
| dc.description.researcharea | Química y Física teórica | |
| dc.format.extent | 16 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.eissn | 1221-8421 | |
| dc.identifier.uri | https://repositorio.cecar.edu.co/handle/cecar/10928 | |
| dc.language.iso | eng | |
| dc.publisher.place | Colombia | |
| dc.relation.citationendpage | 226 | |
| dc.relation.citationissue | 2 | |
| dc.relation.citationstartpage | 211 | |
| dc.relation.citationvolume | 65 | |
| dc.relation.ispartofjournal | Analele Stiintifice Ale Universitatii Al I Cuza Din Iasi Matematica | |
| dc.relation.references | Aiena, P. – Fredholm and local spectral theory, with application to multipliers, Kluwer Academic Publishers, Dordrecht, 2004. | |
| dc.relation.references | Aiena, P. – Classes of operators satisfying a-Weyl’s theorem, Studia Math. 169 (2005), no. 2, 105-122. | |
| dc.relation.references | Aiena, P. – Quasi-Fredholm operators and localized SVEP. Acta Sci. Math. (Szeged) 73 (2007), no. 1-2, 251-263. | |
| dc.relation.references | Aiena, P.; Aponte, E.; Balzan, E. – Weyl type theorems for left and right polaroid operators, Integral Equations Operator Theory 66 (2010), no. 1, 120. | |
| dc.relation.references | Aiena, P.; Biondi, M.T.; Carpintero, C. – On Drazin invertibility, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2839-2848. | |
| dc.relation.references | Amouch, M.; Berkani, M. – On the property (gw), Mediterr. J. Math 5 (2008), no. 3, 371-378. | |
| dc.relation.references | Astudillo-Villalba, F.R.; Ramos-Fernandez, J.C. ´ – Multiplication operators on the space of functions of bounded variation, Demonstr. Math. 50 (2017), no. 1, 105- 115. | |
| dc.relation.references | Barnes, B.A. – The spectral and Fredholm theory of extensions of bounded linear operators, Proc. Amer. Math. Soc. 105 (1989), no. 4, 941-949. | |
| dc.relation.references | Barnes, B.A. – Restrictions of bounded linear operators: closed range, Proc. Amer. Math. Soc. 135 (2007), no. 6, 1735-1740. | |
| dc.relation.references | Berberian, S.K. – An extension of Weyl’s theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273-279. | |
| dc.relation.references | Berkani, M. – Restriction of an operator to the range of its powers, Studia Math. 140 (2000), no. 2, 163-175. | |
| dc.relation.references | Berkani, M. – On a class of quasi-Fredholm operators, Integral Equations Operator Theory 34 (1999), no. 2, 244-249. | |
| dc.relation.references | Berkani, M.; Sarih, M. – On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), no. 3, 457-465. | |
| dc.relation.references | Berkani, M.; Zariouh, H. – Extended Weyl type theorems, Math. Bohemica. 134 (2009), no. 4, 369-378. | |
| dc.relation.references | Berkani, M.; Koliha, J.J – Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), no. 1-2, 359-376. | |
| dc.relation.references | Berkani, M.; Zariouh, H. – New extended Weyl type theorems, Mat. Vesnik. 62 (2010), no. 2, 145-154. | |
| dc.relation.references | Berkani, M.; Sarih, M.; Zariouh, H. – Browder-type theorems and SVEP, Mediterr. J. Math. 8 (2011), no. 3, 399-409. | |
| dc.relation.references | Berkani, M.; Kachad, M. – New Weyl-type theorems-I, Funct. Anal. Approx. Comput. 4 (2012), no. 2, 41-47. | |
| dc.relation.references | Berkani, M.; Kachad, M. – New Browder and Weyl-type theorems, Bull. Korean Math. Soc. 52 (2015), no. 2, 439-452. | |
| dc.relation.references | Carpintero, C.; Munoz, D.; Rosas, E.; Sanabria, J.; Garc ˜ ´ıa, O. – Weyl type theorems and restrictions, Mediterr. J. Math. 11 (2014), no. 4, 1215-1228. | |
| dc.relation.references | Coburn, L.A. – Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288. | |
| dc.relation.references | Chen, L.; Su, W. – A note on Weyl-type theorems and restrictions, Ann. Funct. Anal. 8 (2017), no. 2, 190-198. | |
| dc.relation.references | Finch, J.K. – The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61-69. | |
| dc.relation.references | Gupta, A.; Mamtani, K. – Weyl-type theorems for restrictions of closed linear unbounded operators, Acta Univ. M. Belii Ser. Math. (2015), 72-79. | |
| dc.relation.references | Harte, R.; Lee, W.Y. – Another note on Weyl’s theorem, Trans. Amer. Math. Soc. 349 (1997), no. 5, 2115-2124. | |
| dc.relation.references | Heuser, H.G. – Functional analysis, John Wiley & Sons, Ltd., Chichester, 1982. E.; Garc´ıa, O. – On generalized p | |
| dc.relation.references | Mbekhta, M.; Muller, V. ¨ – On the axiomatic theory of spectrum II, Studia Math. 119 (1996), no. 2, 129-147. | |
| dc.relation.references | Labrousse, J.-P. – Les op´erateurs quasi Fredholm: une g´en´eralisation des op´erateurs semi Fredholm, (French) [Quasi-Fredholm operators: a generalization of semiFredholm operators] Rend. Circ. Mat. Palermo (2) 29 (1980), no. 2, 161-258. | |
| dc.relation.references | Rakocevi ˇ c, V. ´ – Operators obeying a-Weyl’s theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), no. 10, 915-919. | |
| dc.relation.references | Rakocevi ˇ c, V. ´ – On the essential approximate point spectrum II, Mat. Vesnik. 36 (1984), no. 1, 89-97. | |
| dc.relation.references | Sanabria, J.; Carpintero, C.; Rosas, E.; Garc´ıa, O. – On generalized property (v) for bounded linear operators, Studia Math. 212 (2012), no. 2, 141-154. | |
| dc.relation.references | Sanabria, J.; Vasquez, L.; Carpintero, C.; Rosas, E.; Garc ´ ´ıa, O. – On strong variations of Weyl type theorems, Acta Math. Univ. Comenian. (N.S.) 86 (2017), no. 2, 345-356. | |
| dc.relation.references | Zariouh, H. – Property (gz) for bounded linear operators, Mat. Vesnik. 65 (2013), no. 1, 94-103. | |
| dc.relation.references | Zariouh, H. – New version of property (az), Mat. Vesnik. 66 (2014), no. 3, 317-322. | |
| dc.relation.references | Weyl, H. – Uber beschr¨ankte quadratische formen, deren differenz vollsteig ist ¨ , Rend. Circ. Mat. Palermo, 27 (1909), 373-392. | |
| dc.rights | Derechos Reservados. Corporación Universitaria del Caribe – CECAR | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.source | https://repositorio.cuc.edu.co/server/api/core/bitstreams/fe126455-71c5-456c-958b-5c968c537765/content | |
| dc.subject.proposal | New Weyl-type theorems | eng |
| dc.subject.proposal | Strong variations of Weyl type theorems | eng |
| dc.subject.proposal | Restrictions of operators | eng |
| dc.subject.proposal | Spectral properties | eng |
| dc.subject.proposal | Multiplication operators | eng |
| dc.title | On the hereditary character of new strong variations of Weyl type Theorems | eng |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- On the hereditary character of new strong variations of weyl type theorems (1).pdf
- Tamaño:
- 902.16 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 14.49 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:



