Publicación: Diseño de estrategias para la disminución de los gases de efecto invernadero generados por el consumo energético de la Corporación Universitaria del Caribe – CECAR /
| dc.contributor.advisor | Mendoza Ortega, Gean Pablo | |
| dc.contributor.advisor | Gándara Molina, Mario Alfonso | |
| dc.contributor.author | Hernández Benítez, Blanca Paola | spa |
| dc.contributor.author | Garavit Mejía, Eduardo José | spa |
| dc.contributor.author | Pérez Payares, Julián Camilo | spa |
| dc.date.accessioned | 2025-10-30T21:30:50Z | |
| dc.date.issued | 2025 | spa |
| dc.description | 2.2 MB ; 127 páginas figuras, tablas | spa |
| dc.description.abstract | El aumento de 1,1 °C en la temperatura global entre 2011 y 2020, según el IPCC (2021), pone de relieve la urgente necesidad de reducir las emisiones de gases de efecto invernadero (GEI), causadas principalmente por el consumo energético. En este contexto, las instituciones de educación superior desempeñan un papel fundamental en la mitigación del cambio climático. Este estudio se centró en la Corporación Universitaria del Caribe (CECAR) y su consumo energético, proponiendo estrategias para reducir sus emisiones de GEI mediante el cálculo de su huella de carbono mediante la metodología PAS 2050. La investigación siguió un enfoque de uso mixto y se desarrolló en tres fases: primero, se caracterizó el consumo eléctrico de los diferentes bloques de la universidad; luego, se estimó la huella de carbono generada; y, finalmente, se diseñaron estrategias de mitigación basadas en el método de jerarquía AHP. Los resultados revelaron que el Bloque G concentra el mayor consumo energético, siendo el aire acondicionado la principal fuente de emisiones. En conclusión, se propusieron estrategias sostenibles para mejorar la eficiencia energética institucional, lo que permitirá a la CECAR avanzar hacia prácticas más responsables con el medio ambiente. El trabajo. | spa |
| dc.description.abstract | The 1.1°C increase in global temperature between 2011 and 2020, according to the IPCC, highlights the urgent need to reduce greenhouse gas (GHG) emissions, mainly caused by energy consumption. In this context, higher education institutions play a critical role in mitigating climate change. This study focused on the Caribbean University Corporation (CECAR) and its energy consumption, proposing strategies to reduce its GHG emissions by calculating its carbon footprint using the PAS 2050 methodology. The research followed a mixed-use approach and was developed in three phases: first, the electricity consumption of the different blocks of the university was characterized; then, the carbon footprint generated was estimated; and, finally, mitigation strategies were designed based on the AHP hierarchy method. The results revealed that Block G concentrates the highest energy consumption, with air conditioning being the main source of emissions. In conclusion, sustainable strategies were proposed to improve institutional energy efficiency, which will allow CECAR to move towards more environmentally responsible practices. El trabajo. | eng |
| dc.description.degreelevel | Pregrado | spa |
| dc.description.degreename | Arquitecto | spa |
| dc.description.notes | Trabajo de grado(Ingeniero Industrial) --Corporación Universitaria del Caribe. Facultad de Ciencias Básicas, Ingeniería y Arquitectura. Programa de Ingeniería Industrial. Sincelejo, 2025. | spa |
| dc.format.extent | 2.2 MB ; 127 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.barcode | T-09379 | spa |
| dc.identifier.local | INI-09379 2025 | spa |
| dc.identifier.uri | https://repositorio.cecar.edu.co/handle/cecar/11054 | |
| dc.identifier.url | https://catalogo.cecar.edu.co/bib/37751 | spa |
| dc.publisher | Corporación Universitaria del Caribe - CECAR | spa |
| dc.publisher.faculty | Facultad de Ciencias B?sicas, Ingenier?as y Arquitectura | spa |
| dc.publisher.place | Sincelejo | spa |
| dc.publisher.program | Arquitectura | spa |
| dc.relation.references | Alarcón, C. (2021). Climate change, Agenda 2030 and agrarian questions in a post-pandemic world: States, legitimacy and local environmental regulation in Chile, Sweden, and the United States. Revista de Derecho Ambiental(Chile), 2(16), 109–142. https://doi.org/10.5354/0719- 4633.2021.60528 | spa |
| dc.relation.references | Aristizábal-Alzate, C. E., & González-Manosalva, J. L. (2021). Application of NTC-ISO 14064 standard to calculate the Greenhouse Gas emissions and Carbon Footprint of ITM’s Robledo campus. DYNA (Colombia), 88(218), 88–94. https://doi.org/10.15446/dyna.v88n218.88989 | spa |
| dc.relation.references | Banco Mundial, G. (2023). Informe sobre clima y desarrollo del país. www.worldbank.org | spa |
| dc.relation.references | Bastidas-Pacheco, G. A., & Hernández, R. (2019). Cambio climático algunos aspectos a considerar para la supervivencia del ser vivo: revisión sistemática de la literatura. Revista Cuidarte, 10(3). https://doi.org/10.15649/cuidarte.v10i3.664 | spa |
| dc.relation.references | Bautista, J., Sierra, Y., & Bermeo, J. F. (2022). Vista de Emisiones de Gases de Efecto Invernadero en las Instituciones de Educación Superior. 17. https://doi.org/https://doi.org/10.22507/pml.v17n1a10 | spa |
| dc.relation.references | Beltrán-Ayala, J. M., Acurio-Hidalgo, G. F., & Alulema-Zurita, P. S. (2021). Método AHP de Saaty para determinar los factores del quantum indemnizatorio por daño inmaterial en materia penal en Ecuador. Revista Universidad y Sociedad, 13, 249–256. https://orcid.org/0000-0001- 5982-1151 | spa |
| dc.relation.references | Bernardo, J., & Leal, C. (2015). Mecanismo para la mitigación voluntaria de emisiones de gases efecto invernadero para colombia cálculo de la huella de carbono corporativa. | spa |
| dc.relation.references | Bravo-Lopez, M., Marin, S., Terreros-Barreto, J.-R., Garces, A., Molina, A., Rivera, M., & Wheeler, P. (2022). An Overview of the Colombian Power System. 2022 IEEE International Conference on Automation/XXV Congress of the Chilean Association of Automatic Control (ICA-ACCA), 1–6. https://doi.org/10.1109/ICA-ACCA56767.2022.10006289 | spa |
| dc.relation.references | British Standards Institution. (2008). Guide to PAS 2050 : how to assess the carbon footprint of goods and services. BSI. | spa |
| dc.relation.references | Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barret, K., Blanco, G., Cheung, W. W. L., Connors, S. L., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., ... Ha, M. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (P. Arias, M. Bustamante, I. Elgizouli, G. Flato, M. Howden, C. Méndez-Vallejo, J. J. Pereira, R. Pichs-Madruga, S. K. Rose, Y. Saheb, R. Sánchez Rodríguez, D. Ürge-Vorsatz, C. Xiao, N. Yassaa, J. Romero, J. Kim, E. F. Haites, Y. Jung, R. Stavins, ... Y. Park, Eds.). https://doi.org/10.59327/IPCC/AR6- 9789291691647.001 | spa |
| dc.relation.references | Camargo-Urrego, D. J. (2016). Propuesta de una herramienta de evaluación de proyectos mediante la metodología proceso analítico jerárquico-AHP caso universidad ECCI muestra multidisciplinar. | spa |
| dc.relation.references | Cano-Castro, J. C. (2022). Huella de carbono: importancia y necesidad de medición como factor competitivo de mercado. | spa |
| dc.relation.references | Chica, G., Mateus, C., Prieto, F., & Macias, G. (2020). Methodology Selection for the Measurement of the Carbon Footprint in The ICT Field in Colombia. 2020 Congreso Internacional de Innovación y Tendencias En Ingeniería (CONIITI), 1–6. https://doi.org/10.1109/CONIITI51147.2020.9240286 | spa |
| dc.relation.references | Cordonier-Segger, M. C. (2016). Advancing the paris agreement on climate change for sustainable development. Cambridge International Law Journal, 5(2), 202–237. https://doi.org/10.4337/cilj.2016.02.03 | spa |
| dc.relation.references | Cruz-Castaño, N., & Páramo, P. (2023). Valoraciones sobre cambio climático en estudiantes universitarios colombianos. Revista Colombiana de Educación, 89, 33–58. https://doi.org/10.17227/rce.num89-13943 | spa |
| dc.relation.references | Darko, A., Chan, A. P. C., Ameyaw, E. E., Owusu, E. K., Pärn, E., & Edwards, D. J. (2019). Review of application of analytic hierarchy process (AHP) in construction. International Journal of Construction Management, 19(5), 436–452. https://doi.org/10.1080/15623599.2018.1452098 | spa |
| dc.relation.references | Del Pozo-Franco, P. E., De Mora-Campi, L. M., & Cruz-Piza, I. A. (2024). Integración del análisis jerárquico de procesos de las normativas de scooters eléctricos de baja potencia. Revista Dilemas Contemporáneos: Educación, Política y Valores, 1. http://www.dilemascontemporaneoseducacionpoliticayvalores.com/ | spa |
| dc.relation.references | Dilmore, R., & Zhang, L. (2018). Greenhouse gases and their role in climate change. In Green Energy and Technology (Romanov Vyacheslav, Ed.; Springer Verlag, Vol. 10, pp. 15–32). https://doi.org/10.1007/978-3-319-12661-6_10 | spa |
| dc.relation.references | Durojaye, O., Laseinde, T., & Oluwafemi, I. (2020). A Descriptive Review of Carbon Footprint (Vol. 1026, pp. 960–968). https://doi.org/10.1007/978-3-030-27928-8_144 | spa |
| dc.relation.references | Falkner, R. (2016). The Paris Agreement and the new logic of international climate politics. International Affairs, 92(5), 1107–1125. https://doi.org/10.1111/1468-2346.12708 | spa |
| dc.relation.references | Filho, W. L., Vidal, D. G., Dinis, M. A. P., Lambrechts, W., Vasconcelos, C. R. P., Molthan-Hill, P., Abubakar, I. R., Dunk, R. M., Salvia, A. L., & Sharif, A. (2023). Low carbon futures: assessing the status of decarbonisation efforts at universities within a 2050 perspective. Energy, Sustainability and Society, 13(1). https://doi.org/10.1186/s13705-023-00384-6 | spa |
| dc.relation.references | Fischer, C. (2008). Feedback on household electricity consumption: a tool for saving energy? Energy Efficiency, 1(1), 79–104. https://doi.org/10.1007/s12053-008-9009-7 | spa |
| dc.relation.references | Franco, V., Kousoulidou, M., Muntean, M., Ntziachristos, L., Hausberger, S., & Dilara, P. (2013). Road vehicle emission factors development: A review. Atmospheric Environment, 70, 84–97. https://doi.org/10.1016/j.atmosenv.2013.01.006 | spa |
| dc.relation.references | Garcia, R., & Freire, F. (2014). Carbon footprint of particleboard: a comparison between ISO/TS 14067, GHG Protocol, PAS 2050 and Climate Declaration. Journal of Cleaner Production, 66, 199–209. https://doi.org/10.1016/j.jclepro.2013.11.073 | spa |
| dc.relation.references | Gupta, A. (2016). Climate Change and Kyoto Protocol. In Handbook of Environmental and Sustainable Finance (pp. 3–23). Elsevier. https://doi.org/10.1016/B978-0-12-803615- 0.00001-7 | spa |
| dc.relation.references | Hernández-Sampieri, Roberto., & Mendoza-Torres, C. Paulina. (2018). Metodología de la investigación : las rutas cuantitativa, cualitativa y mixta. McGraw-Hill Education. | spa |
| dc.relation.references | Huaroc-Capcha, D. (2023). Gestión ambiental en América Latina 2023 - Estudio de revisión. Revista de Climatología, 23, 1502–1509. https://doi.org/10.59427/rcli/2023/v23cs.1502- 1509 | spa |
| dc.relation.references | IPCC. (2021). Resumen para responsables de políticas. En: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Masson Delmotte V, P Zhai A Pirani, S. L. Connors, O Yelekçi, R Yu, B Zhou, C Péan S Berger, T K Maycock, T Waterfield, N Caud Y Chen, L. Goldfarb, M I Gomis, M Huang, E Lonnoy J, B R Matthews, & K. Leitzell, Eds.). Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WG1_SPM_Spanish.pdf | spa |
| dc.relation.references | IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.59327/IPCC/AR6-9789291691647 | spa |
| dc.relation.references | Jeffry, L., Ong, M. Y., Nomanbhay, S., Mofijur, M., Mubashir, M., & Show, P. L. (2021). Greenhouse gases utilization: A review. Fuel, 301, 121017. https://doi.org/10.1016/j.fuel.2021.121017 | spa |
| dc.relation.references | Karimi-Ghartemani, M., Khajehoddin, S. A., Karshenas, H. R., & Bakhshai, A. (2011). Apparent Power, Power Factor, and Current Factor in Single-phase Circuits with Non-negligible Line Impedances. Electric Power Components and Systems, 39(5), 423–445. https://doi.org/10.1080/15325008.2010.528539 | spa |
| dc.relation.references | Lamb, W. F., Wiedmann, T., Pongratz, J., Andrew, R., Crippa, M., Olivier, J. G. J., Wiedenhofer, D., Mattioli, G., Khourdajie, A. Al, House, J., Pachauri, S., Figueroa, M., Saheb, Y., Slade, R., Hubacek, K., Sun, L., Ribeiro, S. K., Khennas, S., De La Rue Du Can, S., ... Minx, J. (2021a). A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. In Environmental Research Letters (Vol. 16, Issue 7). IOP Publishing Ltd. https://doi.org/10.1088/1748-9326/abee4e | spa |
| dc.relation.references | Lamb, W. F., Wiedmann, T., Pongratz, J., Andrew, R., Crippa, M., Olivier, J. G. J., Wiedenhofer, D., Mattioli, G., Khourdajie, A. Al, House, J., Pachauri, S., Figueroa, M., Saheb, Y., Slade, R., Hubacek, K., Sun, L., Ribeiro, S. K., Khennas, S., De La Rue Du Can, S., ... Minx, J. (2021b). A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. In Environmental Research Letters (Vol. 16, Issue 7). IOP Publishing Ltd. https://doi.org/10.1088/1748-9326/abee4e | spa |
| dc.relation.references | Linares, P., & Labandeira, X. (2010). Energy efficiency: economics and policy. Journal of Economic Surveys, 24(3), 573–592. https://doi.org/10.1111/j.1467-6419.2009.00609.x | spa |
| dc.relation.references | López-Serrano, S. C., Chung-Alonso, P., & Del Pilar-Ramírez Rivera, M. (2021). Analytical Hierarchy Process (AHP) as a multi-criteria method for optimal location of intermodal stations. Economia, Sociedad y Territorio, 21(66), 315–358. https://doi.org/10.22136/est20211583 | spa |
| dc.relation.references | Lund, H., Ostergaard, P. A., Connolly, D., & Mathiesen, B. V. (2017). Smart energy and smart energy systems. Energy, 137, 556–565. https://doi.org/10.1016/j.energy.2017.05.123 | spa |
| dc.relation.references | Malagón-Monroy Miguel Alberto. (2013). Análisis, Evaluación y Mejora del Componente Agua y sus Criterios de evaluación de la Certificación PRECO. | spa |
| dc.relation.references | Naciones Unidas. (2015, September 25). Objetivos de desarrollo sostenible . https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/ | spa |
| dc.relation.references | Naciones Unidas. (2018). La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe. https://doi.org/(LC/G.2681-P/Rev.3 | spa |
| dc.relation.references | Petro-Argel, S. L., Ramirez-Cordero, A. L., & Ramirez-Vega, C. J. (2022). Diseño de metodología para el cálculo de huella de carbono. https://manglar.uninorte.edu.co/bitstream/handle/10584/11375/10078281841003234968100 7402068.pdf?sequence=1&isAllowed=y | spa |
| dc.relation.references | Ríos-Aceves, K. E., Macías-Hernández, B. A., Ventura-Houle, R., & Alemán Baez, A. (2020). Salud ambiental en interiores: edificios enfermos. Sociedad y Ambiente, 22, 1–21. https://doi.org/10.31840/sya.vi22.2071 | spa |
| dc.relation.references | Rodríguez, C. J. V., Ortega, G. P. M., Madera, J. C. B., & Cruz, M. J. C. (2018). Evaluación de la Huella de Carbono en la Producción de Materiales Agregados para la Construcción en el Municipio de Toluviejo - Colombia. Proceedings of the LACCEI International Multi- Conference for Engineering, Education and Technology, 2018-July. https://doi.org/10.18687/LACCEI2018.1.1.18 | spa |
| dc.relation.references | Rodriguez, J. P., Ruiz-Ochoa, M. A., & Meneses, A. (2020). Revisión de los factores de emisión en las metodologías de huella de carbono en Colombia. Espacios, 41(47), 74–84. https://doi.org/10.48082/espacios-a20v41n47p06 | spa |
| dc.relation.references | Rodríguez-Andara, A., Río-Belver, R. M., & García-Marina, V. (2020). Sustainable university institutions: Determination of gases greenhouse efect in a university center and strategies to decrease them. Dyna (Spain), 95(1), 47–53. https://doi.org/10.6036/9247 | spa |
| dc.relation.references | Rojas, M. del P., & Herrera, J. A. (2023). Aplicación del proceso de análisis jerárquico (ahp) para las selección de medios de transporte con energía renovable basados en los factores socioeconómicos, legales y ambientales en la ciudad de Bogota. | spa |
| dc.relation.references | Schmidt, K., Aumann, I., Hollander, I., Damm, K., & Von Der-Schulenburg, M. G. (2015). Applying the Analytic Hierarchy Process in healthcare research: A systematic literature review and evaluation of reporting. In BMC Medical Informatics and Decision Making (Vol. 15, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12911-015-0234-7 | spa |
| dc.relation.references | Seyed-Behbood, I. Z., López-Gutiérrez, J. S., Dolores, E., Fernández-Sánchez, G., & Garay- Rondero, C. L. (2023). A Framework for Accurate Carbon Footprint Calculation in Seaports: Methodology Proposal. Journal of Marine Science and Engineering, 11(5). https://doi.org/10.3390/jmse11051007 | spa |
| dc.relation.references | Sinden, G. (2009). The contribution of PAS 2050 to the evolution of international greenhouse gas emission standards. The International Journal of Life Cycle Assessment, 14(3), 195–203. https://doi.org/10.1007/s11367-009-0079-3 | spa |
| dc.relation.references | Soam, S. K., Srinivasa Rao, N., BS, Y., Balasani, R., Rakesh, S., Marwaha, S., Kumar, P., & Agrawal, R. C. (2023). AHP Analyser: A decision-making tool for prioritizing climate change mitigation options and forest management. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.1099996 | spa |
| dc.relation.references | Solano-Blandón, S. (2018). Estudio metodológico para la generación de energía en zonas no interconectadas (ZNI), aplicado al contexto del posconflicto. | spa |
| dc.relation.references | Stavila V, Talin A A, & Allendorf, M. D. (2014). MOF-based electronic and opto-electronic devices. Chem. Soc. Rev, 43(16), 5994–6010. https://doi.org/https://doi.org/10.1039/C4CS00096J | spa |
| dc.relation.references | Stoddard, I., Anderson, K., Capstick, S., Carton, W., Depledge, J., Facer, K., Gough, C., Hache, F., Hoolohan, C., Hultman, M., Hällström, N., Kartha, S., Klinsky, S., Kuchler, M., Lövbrand, E., Nasiritousi, N., Newell, P., Peters, G. P., Sokona, Y., ... Williams, M. (2021). Three Decades of Climate Mitigation: Why Haven’t We Bent the Global Emissions Curve? Review of Environment and Resources, 53. https://doi.org/10.1146/annurev-environ-012220 | spa |
| dc.relation.references | Streimikiene, D., & Girdzijauskas, S. (2009). Assessment of post-Kyoto climate change mitigation regimes impact on sustainable development. Renewable and Sustainable Energy Reviews, 13(1), 129–141. https://doi.org/10.1016/j.rser.2007.07.002 | spa |
| dc.relation.references | Torres-Rojas, M. C. (2023). Cálculo huella de carbono Corporación Colombiana de Logística. | spa |
| dc.relation.references | Traub-Gainsborg, J. F. (2023). Evolución de la Huella de Carbono de Universidades Públicas de la Comunidad de Madrid en sus tres alcances. Universidad Politécnica de Madrid. | spa |
| dc.relation.references | Unidad de Planeación Minero-Energética. (2021). Factor de emisiones de la red de energía eléctrica de Colombia. https://www1.upme.gov.co/siame/Documents/Calculo-FE-del- SIN/Documento_calculo_Cartilla_Factor_de_emision_2021.pdf | spa |
| dc.relation.references | UPME. (2020). Plan De Expansión De Referencia Generación – Transmisión 2020 – 2034. https://www1.upme.gov.co/siel/Pages/Planes-expansion-generacion-transmision.aspx | spa |
| dc.relation.references | Vader, N. (2022, September 14). Operational Carbon Emission Factor Literature Review. https://doi.org/10.26868/25746308.2022.C034 | spa |
| dc.relation.references | Valls-Val, K., & Bovea, M. D. (2022). Carbon footprint assessment tool for universities: CO2UNV. Sustainable Production and Consumption, 29, 791–804. https://doi.org/10.1016/j.spc.2021.11.020 | spa |
| dc.relation.references | Varón-Hoyos, M., Osorio-Tejada, J., & Morales-Pinzón, T. (2021). Carbon footprint of a university campus from Colombia. Carbon Management, 12(1), 93–107. https://doi.org/10.1080/17583004.2021.1876531 | spa |
| dc.relation.references | Vasan, A., Sood, B., & Pecht, M. (2014). Carbon footprinting of electronic products. Applied Energy, 136, 636–648. https://doi.org/10.1016/j.apenergy.2014.09.074 | spa |
| dc.relation.references | Velez-Gil, W. D. (2019). Análisis multicriterio como herramienta para la selección de la alternativa energética sostenible para el contexto de la hacienda Jerusalén, cauca. | spa |
| dc.relation.references | Vivanco-Díaz, C. F., Mora-Melia, D., Ballesteros-Pérez, P., & Gutierrez-Bahamondes, J. (2022). Application of the analytical hierarchical procedure (ahp) to the determination of priorities in the implementation of hydro-efficient devices in chile. International Congress on Project Management and Engineering Terrassa, 26. http://dspace.aeipro.com/xmlui/bitstream/handle/123456789/3212/AT04- 018_22.pdf?sequence=1&isAllowed=y | spa |
| dc.relation.references | World Resources Institute. (n.d.). Greenhouse gas protocol. 2022. https://doi.org/LC/G.2681- P/Rev.3 | spa |
| dc.relation.references | Yan, X. F., & Meng, Y. (2011). Carbon Emissions Calculation Model of Building Based on PAS2050. Advanced Materials Research, 255–260, 1582–1586. https://doi.org/10.4028/www.scientific.net/AMR.255-260.1582 | spa |
| dc.relation.references | Zuñiga-Herera, L. M. (2023). Consequences of global warming. SCT Proceedings in Interdisciplinary Insights and Innovations, 1, 74. https://doi.org/10.56294/piii202374 | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.creativecommons | Atribuci?n-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.lemb | Cambio climático. | spa |
| dc.subject.lemb | Consumo eléctrico. | spa |
| dc.subject.lemb | Emisiones de gases de efecto invernadero. | spa |
| dc.subject.lemb | Método de jerarquía AHP. | spa |
| dc.subject.lemb | Huella de carbono. | spa |
| dc.subject.lemb | PAS 2050. | spa |
| dc.title | Diseño de estrategias para la disminución de los gases de efecto invernadero generados por el consumo energético de la Corporación Universitaria del Caribe – CECAR / | spa |
| dc.type | Trabajo de grado - Pregrado | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
| dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
| dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
| dspace.entity.type | Publication | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
| oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| relation.isDirectorOfPublication | 5cc954d0-3a77-47c1-8d75-873a4ca10e17 | |
| relation.isDirectorOfPublication | b33530f6-ca5d-4385-abb6-5a992f315aea | |
| relation.isDirectorOfPublication.latestForDiscovery | 5cc954d0-3a77-47c1-8d75-873a4ca10e17 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Diseño de estrategias para la disminución de los gases de efecto invernadero.pdf
- Tamaño:
- 2.25 MB
- Formato:
- Adobe Portable Document Format



