Publicación:
Location of Urban Logistics Spaces (ULS) for Two-Echelon Distribution Systems

dc.contributor.authorJosé Ruiz-Meza
dc.contributor.authorKaren Meza-Peralta
dc.contributor.authorJairo R. Montoya-Torres
dc.contributor.authorJesusGonzalez-Feliu
dc.contributor.corporatenameCORPORACION UNIVERSITARIA DEL CARIBE CECAR
dc.contributor.researchgroupSIMULACIÓN DE TECNOLOGÍAS PARA PROCESOS INDUSTRIALES
dc.date.accessioned2024-10-15T16:01:44Z
dc.date.available2024-10-15T16:01:44Z
dc.date.issued2021-10
dc.description.abstractThe main concern in city logistics is the need to optimize the movement of goods in urban contexts, and to minimize the multiple costs inherent in logistics operations. Inspired by an application in a medium-sized city in Latin America, this paper develops a bi-objective mixed linear integer programming (MILP) model to locate different types of urban logistics spaces (ULS) for the configuration of a two-echelon urban distribution system. The objective functions seek to minimize the costs associated with distance traveled and relocation, in addition to the costs of violation of time windows. This model considers heterogeneous transport, speed assignment, and time windows. For experimental evaluation, two operational scenarios are considered, and Pareto frontiers are obtained to identify the efficient non-dominated solutions to select the most feasible ones from such a set. A case study of a distribution company of goods for supermarkets in the city of Barranquilla, Colombia, is also used to validate the proposed model. These solutions allow decision-makers to define the configuration of ULS networks for urban product delivery.eng
dc.description.editionvol:10
dc.description.researchareaCiencia y desarrollo tecnologíco
dc.description.researchareaComputación aplicada
dc.description.researchareaGestión de la tecnología y la innovación
dc.description.researchareaIngeniería de Software
dc.description.researchareaLogística y Gestión de procesos
dc.description.researchareaTecnología y calidad en la industria de alimento
dc.format.extent21
dc.format.mimetypeapplication/pdf
dc.identifier.citationRuiz-Meza, J.; Meza-Peralta, K.; Montoya-Torres, J.R.; Gonzalez-Feliu, J. Location of Urban Logistics Spaces (ULS) for Two-Echelon Distribution Systems. Axioms 2021, 10, 214. https://doi.org/10.3390/axioms10030214
dc.identifier.doihttps://doi.org/10.3390/axioms10030214
dc.identifier.urihttps://repositorio.cecar.edu.co/handle/cecar/10331
dc.language.isoeng
dc.publisherAXIOMS
dc.publisher.placeCOLOMBIA
dc.relation.referencesRze´ sny-Ciepli´ nska, J.; Szmelter-Jarosz, A. Assessment of the Crowd Logistics Solutions—The Stakeholders’ Analysis Approach. Sustainability 2019, 11, 5361.
dc.relation.referencesCattaruzza, D.; Absi, N.; Feillet, D.; González-Feliu, J. Vehicle routing problems for city logistics. EURO J. Transp. Logist. 2017, 6, 51–79.
dc.relation.referencesGonzalez-Feliu, J.; Peris-Pla, C. Impacts of retailing attractiveness on freight and shopping trip attraction rates. Res. Transp. Bus. Manag. 2017, 24, 49–58.
dc.relation.referencesNathanail, E.; Adamos, G.; Gogas, M. A novel approach for assessing sustainable city logistics. Transp. Res. Procedia 2017, 25, 1036–1045.
dc.relation.referencesÖsterle, I.; Aditjandra, P.T.; Vaghi, C.; Grea, G.; Zunder, T.H. The role of a structured stakeholder consultation process within the establishment of a sustainable urban supply chain. Supply Chain Manag. An Int. J. 2015, 20, 284–299.
dc.relation.referencesestablishment of a sustainable urban supply chain. Supply Chain Manag. An Int. J. 2015, 20, 284–299. [CrossRef] Gonzalez-Feliu, J.; Pronello, C.; Grau, J.M.S. Multi-stakeholder collaboration in urban transport: State-of-the-art and research opportunities. Transport 2018, 33, 1079–1094.
dc.relation.referencesGonzalez-Feliu, J. Sustainable Urban Logistics: Planning and Evaluation; Wiley-ISTE: Hoboken, NJ, USA, 2018; ISBN 978-1-119 42194-8.
dc.relation.referencesDorta-González, P. Transporte y Logística Internacional, Universidad de Las Palmas de Gran Canaria. 2014. Available online: http://hdl.handle.net/10553/11886 (accessed on 22 August 2021).
dc.relation.referencesBowersox, D.J.; Closs, D.J.; Helferich, O.K. Logistical Management: A Systems Integration of Physical Distribution, Manufacturing Support, and Materials Procurement; Macmillan: London, UK, 1986; ISBN 9780023130908.
dc.relation.referencesSachan, A.; Datta, S. Review of supply chain management and logistics research. Int. J. Phys. Distrib. Logist. Manag. 2005, 35, 664–705.
dc.relation.referencesDavis-Sramek, B.; Fugate, B.S. State of logistics: A visionary perspective. J. Bus. Logist. 2007, 28, 1–34.
dc.relation.referencesMuñoz-Villamizar, A.; Montoya-Torres, J.R.; Moreno-Camacho, C.A. Simulation-based optimization approach for vehicle allocation in a private transport service: A case study. Manag. Sci. Lett. 2019, 193–204.
dc.relation.referencesRai, H.B.; Van Lier, T.; Meers, D.; Macharis, C. Improving urban freight transport sustainability: Policy assessment framework and case study. Res. Transp. Econ. 2017, 64, 26–35.
dc.relation.referencesRusso, F.; Comi, A. Investigating the Effects of City Logistics Measures on the Economy of the City. Sustainability 2020, 12, 1439.
dc.relation.referencesVilla, R.; Monzón,A.AMetro-BasedSystemasSustainableAlternativeforUrbanLogisticsintheEraofE-Commerce. Sustainability 2021, 13, 4479.
dc.relation.referencesGonzalez-Feliu, J. Sustainability Evaluation of Green Urban Logistics Systems: Literature Overview and Proposed Framework. In Green Initiatives for Business Sustainability and Value Creation; Paul, A.K., Bhattacharyya, D.K., Anand, S., Eds.; IGI Global: Hershey, PA, USA, 2018; pp. 103–134.
dc.relation.referencesVanDuin, J.H.R.; Quak, H.J.; Muñuzuri, J. Revival of cost benefit analysis for evaluating the city distribution centre concept? In Innovations in City Logistics; Nova Science: New York, NY, USA, 2008; pp. 97–114. ISBN 9781604567250.
dc.relation.referencesBattaia, G.; Faure, L.; Marqués, G.; Guillaume, R.; Montoya-Torres, J.R. A Methodology to Anticipate the Activity Level of Collaborative Networks: The Case of Urban Consolidation. Supply Chain Forum An Int. J. 2014, 15, 70–82.
dc.relation.referencesNimtrakool, K.; Gonzalez-Feliu, J.; Capo, C. Barriers to the Adoption of an Urban Logistics Collaboration Process: A Case Study of the Saint-Etienne Urban Consolidation Centre. In City Logistics 2; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 313–332.
dc.relation.referencesMelo, S.; Costa, A. Definition of a Set of Indicators to Evaluate the Performance of Urban Goods Distribution Initiatives. In City Distribution and Urban Freight Transport; Macharis, C., Melo, S., Eds.; Edward Elgar Publishing: Northampton, MA, USA, 2011; pp. 120–147.
dc.relation.referencesAntún, J.P. Distribución Urbana de Mercancías: Estrategias con Centros Logísticos. 2013. Available online: https: //publications.iadb.org/publications/spanish/document/Distribuci%C3%B3n-urbana-de-mercanc%C3%ADas-Estrategias con-centros-log%C3%ADsticos.pdf (accessed on 22 August 2021).
dc.relation.referencesBoudoin, D.; Morel, C.; Gardat, M. Supply Chains and Urban Logistics Platforms. In Sustainable Urban Logistics: Concepts, Methods and Information Systems; Gonzalez-Feliu, J., Semet, F., Routhier, J., Eds.; Springer: Berlin, Heidelberg, 2014; p. 272. ISBN 9783642317873.
dc.relation.referencesCrainic, T.G. City Logistics. In State-of-the-Art Decision-Making Tools in the Information-Intensive Age; Chen, Z.L., Raghavan, S., Gray, P., Greenberg, H.J., Eds.; INFORMS: Catonsville, MD, USA, 2008; pp. 181–212. [
dc.relation.referencesBoudouin, D. Urban Logistics Spaces: Methodological Guide; La Documentation française: Paris, France, 2012
dc.relation.referencesMeza-Peralta, K.; Gonzalez-Feliu, J.; Montoya-Torres, J.R.; Khodadad-Saryazdi, A. A unified typology of urban logistics spaces as interfaces for freight transport. Supply Chain Forum Int. J. 2020, 21, 274–289.
dc.relation.referencesCrainic, T.G.; Sgalambro, A. Service network design models for two-tier city logistics. Optim. Lett. 2014, 8, 1375–1387.
dc.relation.referencesRao,C.; Goh, M.; Zhao, Y.; Zheng, J. Location selection of city logistics centers under sustainability. Transp. Res. Part D Transp. Environ. 2015, 36, 29–44.
dc.relation.referencesCombes, F. Equilibrium and Optimal Location of Warehouses in Urban Areas: A Theoretical Analysis with Implications for Urban Logistics. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 262–271.
dc.relation.referencesLaporte, G.; Nickel, S.; Saldanha da Gama, F. Location Science; Laporte, G., Nickel, S., Saldanha da Gama, F., Eds.; Springer International Publishing: Cham, Switzerlad, 2019; ISBN 978-3-319-13110-8.
dc.relation.referencesOrtiz-Astorquiza, C.; Contreras, I.; Laporte, G. Multi-level facility location problems. Eur. J. Oper. Res. 2018, 267, 791–805
dc.relation.referencesFarahani, R.Z.; Fallah, S.; Ruiz, R.; Hosseini, S.; Asgari, N. OR models in urban service facility location: A critical review of applications and future developments. Eur. J. Oper. Res. 2019, 276, 1–27.
dc.relation.referencesHenriques de Gusmão, A.P.; Aragão Pereira, R.M.; Silva, M.M.; da Costa Borba, B.F. The Use of a Decision Support System to Aid a Location Problem Regarding a Public Security Facility. In Proceedings of the Decision Support Systems IX: Main Developments and Future Trends Volume 348 (5th International Conference on Decision Support System Technology, EmC-ICDSST 2019, Funchal, Portugal, 27–29 May 2019; pp. 15–27.
dc.relation.referencesCsiszár, C.; Csonka, B.; Földes, D.; Wirth, E.; Lovas, T. Urban public charging station locating method for electric vehicles based on land use approach. J. Transp. Geogr. 2019, 74, 173–180.
dc.relation.referencesMyagmartseren,P.; Buyandelger, M.; Brandt, S.A. Implications of a Spatial Multicriteria Decision Analysis for Urban Development in Ulaanbaatar, Mongolia. Math. Probl. Eng. 2017, 2017, 1–16.
dc.relation.referencesProdhon, C.; Prins, C. A survey of recent research on location-routing problems. Eur. J. Oper. Res. 2014, 238, 1–17.
dc.relation.referencesMartinho, A.; Alves, E.; Rodrigues, A.M.; Ferreira, J.S. Multicriteria Location-Routing Problems with Sectorization. In Operational Research; Springer Proceedings in Mathematics & Statistics, APDIO 2017; Vaz, A., Almeida, J., Oliveira, J., Pinto, A., Eds.; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany; Valença, Portugal, 2018; pp. 215–234.
dc.relation.referencesFatimah, I.; Jun, Y.B.; Mustafa, S. Modelling the logistic processes using fuzzy decision approach. Hacettepe J. Math. Stat. 2018, 48.
dc.relation.referencesAwasthi, A.; Adetiloye, T.; Crainic, T.G. Collaboration partner selection for city logistics planning under municipal freight regulations. Appl. Math. Model. 2016, 40, 510–525.
dc.relation.referencesShavarani, S.M.; Mosallaeipour, S.; Golabi, M.; ˙ Izbirak, G. A congested capacitated multi-level fuzzy facility location problem: An efficient drone delivery system. Comput. Oper. Res. 2019, 108, 57–68.
dc.relation.referencesCanevaro, E.; Ingaramo, R.; Lami, I.M.; Morena, M.; Robiglio, M.; Saponaro, S.; Sezenna, E. Strategies for the Sustainable Reindustrialization of Brownfields. IOP Conf. Ser. Earth Environ. Sci. 2019, 296, 012010.
dc.relation.referencesKoç,Ç.; Bekta¸ s, T.; Jabali, O.; Laporte, G. The impact of depot location, fleet composition and routing on emissions in city logistics. Transp. Res. Part B Methodol. 2016, 84, 81–102
dc.relation.referencesAljohani, K.; Thompson, R.G. Impacts of logistics sprawl on the urban environment and logistics: Taxonomy and review of literature. J. Transp. Geogr. 2016, 57, 255–263.
dc.relation.referencesRabe, M.; Gonzalez-Feliu, J.; Chicaiza-Vaca, J.; Tordecilla, R.D. Simulation-Optimization Approach for Multi-Period Facility Location Problems with Forecasted and RandomDemandsinaLast-MileLogisticsApplication. Algorithms 2021, 14, 41.
dc.relation.referencesChase, R.; Jacobs, R.; Aquilano, N. Administración de Operaciones. Producción y Cadena de Suministros, 12th ed.; McGraw Hill: New York, NY, USA, 2016; ISBN 9789701070277.
dc.relation.referencesHeitz, A.; Launay, P.; Beziat, A. Heterogeneity of logistics facilities: An issue for a better understanding and planning of the location of logistics facilities. Eur. Transp. Res. Rev. 2019, 11, 5.
dc.relation.referencesYang, K.; Roca-Riu, M.; Menéndez, M. An auction-based approach for prebooked urban logistics facilities. Omega 2019, 89, 193–211.
dc.relation.referencesNdhaief, N.; Bistorin, O.; Rezg, N. A modelling approach for city locating logistic platforms based on combined forward and reverse flows. IFAC-PapersOnLine 2017, 50, 11701–11706.
dc.relation.referencesAmbrosino, D.; Sciomachen, A. A capacitated hub location problem in freight logistics multimodal networks. Optim. Lett. 2016, 10, 875–901.
dc.relation.referencesKostrzewski, M.; Varjan, P. The issue of parking areas conditions in surrounding of logistics and production facilities in Slovakia and Poland. In Proceedings of the 22nd International Scientific Conference Transport Means 2018, TRANSPORT MEANS, Kaunas, Lithuania, 3–5 October 2018; Robertas, K., Ed.; Transport Means: Kaunas, Lithuania, 2018.
dc.relation.referencesBenhida, K.; Azougagh, Y.; Elfezazi, S. Modelling a flows in supply chain with analytical models: Case of a chemical industry. IOP Conf. Ser. Mater. Sci. Eng. 2016, 114, 012066.
dc.relation.referencesGuyon,O.; Absi, N.; Feillet, D.; Garaix, T. A Modeling Approach for Locating Logistics Platforms for Fast Parcels Delivery in Urban Areas. Procedia-Soc. Behav. Sci. 2012, 39, 360–368.
dc.relation.referencesSakai, T.; Kawamura, K.; Hyodo, T. The relationship between commodity types, spatial characteristics, and distance optimality of logistics facilities. J. Transp. Land Use 2018, 11.
dc.relation.referencesOudouar, F.; El Fallahi, A.; Zaoui, E.M. An improved heuristic based on clustering and genetic algorithm for solving the multi-depot vehicle routing problem. Int. J. Recent Technol. Eng. 2019, 8, 6535–6540.
dc.relation.referencesMousavi Optimal Design of the Cross-docking in Distribution Networks: Heuristic Solution Approach. Int. J. Eng. 2014, 27.
dc.relation.referencesCortinhal, M.J.; Lopes, M.J.; Melo, M.T. Dynamic design and re-design of multi-echelon, multi-product logistics networks with outsourcing opportunities: A computational study. Comput. Ind. Eng. 2015, 90, 118–131.
dc.relation.referencesZhen, L.; Sun, Q.; Wang, K.; Zhang, X. Facility location and scale optimisation in closed-loop supply chain. Int. J. Prod. Res. 2019, 7567–7585.
dc.relation.referencesTeye, C.; Bell, M.G.H.; Bliemer, M.C.J. Urban intermodal terminals: The entropy maximising facility location problem. Transp. Res. Part B Methodol. 2017, 100, 64–81.
dc.relation.referencesWu,T.; Xiao, F.; Zhang, C.; Zhang, D.; Liang, Z. Regression and extrapolation guided optimization for production–distribution with ship–buy–exchange options. Transp. Res. Part E Logist. Transp. Rev. 2019, 129, 15–37.
dc.relation.referencesJeet, V.; Kutanoglu, E. Part commonality effects on integrated network design and inventory models for low-demand service parts logistics systems. Int. J. Prod. Econ. 2018, 206, 46–58.
dc.relation.referencesEssaadi, I.; Grabot, B.; Féniès, P. Location of global logistic hubs within Africa based on a fuzzy multi-criteria approach. Comput. Ind. Eng. 2019, 132, 1–22.
dc.relation.referencesVahdani, B.; Dehbari, S.; Naderi-Beni, M.; Zeinali Kh, E. An artificial intelligence approach for fuzzy possibilistic-stochastic multi-objective logistics network design. Neural Comput. Appl. 2014, 25, 1887–1902.
dc.relation.referencesOcampo, L.A.; Himang, C.M.; Kumar, A.; Brezocnik, M. A novel multiple criteria decision-making approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy AHP for mapping collection and distribution centers in reverse logistics. Adv. Prod. Eng. Manag. 2019, 14, 297–322.
dc.relation.referencesMoreno-Camacho, C.A.; Montoya-Torres, J.R.; Jaegler, A.; Gondran, N. Sustainability metrics for real case applications of the supply chain network design problem: A systematic literature review. J. Clean. Prod. 2019, 231, 600–618.
dc.relation.referencesGonzalez-Feliu, J. Multi-stage LTL transport systems in supply chain management. In Logistics: Perspectives, Approaches and Challenges; Cheung, J., Song, H., Eds.; Nova Science Publishers: New York, NY, USA, 2013; pp. 65–86. ISBN 9781626180871.
dc.relation.referencesAmbrosino, D.; Grazia Scutellà, M. Distribution network design: New problems and related models. Eur. J. Oper. Res. 2005, 165, 610–624.
dc.relation.referencesFarahani, R.Z.; Hekmatfar, M.; Fahimnia, B.; Kazemzadeh, N. Hierarchical facility location problem: Models, classifications, techniques, and applications. Comput. Ind. Eng. 2014, 68, 104–117.
dc.relation.referencesCombes, F. A theoretical analysis of the cost structure of urban logistics. In Proceedings of the ILS 2016—6th International Conference on Information Systems, Logistics and Supply Chain, Bordeaux, France, 1–4 June 2016.
dc.relation.referencesGonzalez-Feliu, J. Viability and potential demand capitation of urban freight tramway systemss via demand-supply modelling and cost benefit analysis. In Proceedings of the ILS 2016—6th International Conference on Information Systems, Logistics and Supply Chain, Bordeaux, France, 1–4 June 2016; pp. 1–9.
dc.relation.referencesAckoff, R.L. Optimization + objectivity = optout. Eur. J. Oper. Res. 1977, 1, 1–7.
dc.relation.referencesGonzalez-Feliu, J. Logistics and Transport Modeling in Urban Goods Movement; Advances in Logistics, Operations, and Management Science; IGI Global: Hershey, PA, USA, 2019; ISBN 9781522582922.
dc.relation.referencesVarela, I. Importancia de los Centros Logísticos y sus Efectos Sobre la Competitividad Territorial. Master’s Thesis, Pointificia Universidad Javeriana, Bogotá, Colombia, 2010.
dc.relation.referencesPlan DeOrdenamiento Territorial. 2012, pp. 1–166. Available online: https://www.uninorte.edu.co/documents/73923/1041591/ DTS_POT_2012_gral.pdf/9b0ea384-bb12-429c-a215-a43f7aafb339?version=1.0 (accessed on 22 August 2021).
dc.relation.referencesTricoire, F.; Parragh, S.N. Investing in logistics facilities today to reduce routing emissions tomorrow. Transp. Res. Part B Methodol. 2017, 103, 56–67.
dc.relation.referencesRaimbault, N. From regional planning to port regionalization and urban logistics. The inland port and the governance of logistics development in the Paris region. J. Transp. Geogr. 2019, 78, 205–213. [
dc.relation.referencesSakai, T.; Kawamura, K.; Hyodo, T. Evaluation of the spatial pattern of logistics facilities using urban logistics land-use and traffic simulator. J. Transp. Geogr. 2019, 74, 145–160.
dc.relation.referencesMonios, J. Identifying Governance Relationships Between Intermodal Terminals and Logistics Platforms. Transp. Rev. 2015, 35, 767–791.
dc.relation.referencesHeitz, A.; Dablanc, L. Logistics Spatial Patterns in Paris. Transp. Res. Rec. J. Transp. Res. Board 2015, 2477, 76–84.
dc.relation.referencesKrzysztofik, R.; Kantor-Pietraga, I.; Spórna, T.; Dragan, W.; Mihaylov, V. Beyond ‘logistics sprawl’ and ‘logistics anti-sprawl’. Case of the Katowice region, Poland. Eur. Plan. Stud. 2019, 27, 1646–1660.
dc.relation.referencesRao, W.; Jin, C. A Model of Vehicle Routing Problem Minimizing Energy Consumption in Urban Environment. In Proceedings of the 2012 Asian Conference of Management Science and Applications, Chengdu, China, 7–8 September 2012; pp. 21–29.
dc.relation.referencesMora-Garcia, R.-T.; Marti-Ciriquian, P.; Perez-Sanchez, R.; Cespedes-Lopez, M. A comparative analysis of Manhattan, Euclidean and network distances. Why are network distances more useful to urban professionals? In Proceedings of the International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Man-agement SGEM, Albena, Bulgaria, 30 June–9 July 2018.
dc.relation.referencesCzyzyk, J.; Mesnier, M.P.; Moré, J.J. The NEOS Server. IEEE J. Comput. Sci. Eng. 1998, 5, 68–75.
dc.rightsCopyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.sourcehttps://www.mdpi.com/2075-1680/10/3/214
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.ocdeLOCATION
dc.subject.otherUrban Logistics Spaces
dc.subject.otherdistribution systems
dc.subject.proposalUrban Logistics Spaceseng
dc.subject.proposaltwo-echelon distribution systemseng
dc.subject.proposallocationeng
dc.subject.proposalmixed-integer linear programmingeng
dc.subject.proposalmulti-objectiveeng
dc.subject.proposalcase studyeng
dc.titleLocation of Urban Logistics Spaces (ULS) for Two-Echelon Distribution Systemseng
dc.typeInforme de investigación
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/report
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
axioms-10-00214.pdf
Tamaño:
4.32 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción: